scholarly journals MHD Flow of a Viscous Fluid over an Exponentially Stretching Sheet in a Porous Medium

2014 ◽  
Vol 2014 ◽  
pp. 1-8 ◽  
Author(s):  
Iftikhar Ahmad ◽  
Muhmmad Sajid ◽  
Wasim Awan ◽  
Muhammad Rafique ◽  
Wajid Aziz ◽  
...  

Radiation effects on magnetohydrodynamic (MHD) boundary-layer flow and heat transfer characteristic through a porous medium due to an exponentially stretching sheet have been studied. Formulation of the problem is based upon the variable thermal conductivity. The heat transfer analysis is carried out for both prescribed surface temperature (PST) and prescribed heat flux (PHF) cases. The developed system of nonlinear coupled partial differential equations is transformed to nonlinear coupled ordinary differential equations by using similarity transformations. The series solutions for the transformed of the transformed flow and heat transfer problem were constructed by homotopy analysis method (HAM). The obtained results are analyzed under the influence of various physical parameters.

2015 ◽  
Vol 14 (3) ◽  
pp. 43-60
Author(s):  
S Manjunath ◽  
D Sreelakshmi

The paper presents the study of velocity profiles in a hydrodynamic flow and heat transfer in a Newtonian fluid over an exponentially stretching sheet. Navier slip condition is used at the boundary. The stretching of the sheet is assumed to be nonlinearly proportional to the distance from slit. Non-linear partial differential equations characterize the flow phenomenon with boundary conditions in a semi infinite domain. The equations are transformed to nonlinear ordinary differential equations by applying suitable local similarity transformation. The series solution of the transformed equations are obtained by using differential transform method and Pade approximation with assistance from the shooting method in obtaining the unknown initial values. The solution is obtained in a power series with assured convergence. The effects of various parameters on velocity and temperature profiles are presented graphically.


2015 ◽  
Vol 2015 ◽  
pp. 1-7 ◽  
Author(s):  
I. Swain ◽  
S. R. Mishra ◽  
H. B. Pattanayak

An attempt has been made to study the heat and mass transfer effect in a boundary layer MHD flow of an electrically conducting viscous fluid subject to transverse magnetic field on an exponentially stretching sheet through porous medium. The effect of thermal radiation and heat source/sink has also been discussed in this paper. The governing nonlinear partial differential equations are transformed into a system of coupled nonlinear ordinary differential equations and then solved numerically using a fourth-order Runge-Kutta method with a shooting technique. Graphical results are displayed for nondimensional velocity, temperature, and concentration profiles while numerical values of the skin friction local Nusselt number and Sherwood number are presented in tabular form for various values of parameters controlling the flow system.


2014 ◽  
Vol 18 (4) ◽  
pp. 1079-1093 ◽  
Author(s):  
V. Singh ◽  
Shweta Agarwal

An Analysis has been carried out to study the boundary layer flow and heat transfer characteristics of second order fluid and second grade fluid with variable thermal conductivity and radiation over an exponentially stretching sheet in porous medium. The basic boundary layer equations governing the flow and heat transfer in prescribed surface temperature (PST) and prescribed heat flux (PHF) cases are in the form of partial differential equations. These equations are converted to non-linear ordinary differential equations using similarity transformations. Numerical solutions of the resulting boundary value problem are solved by using the fourth order Runge-Kutta method with shooting technique for various values of the physical parameters. The effect of variable thermal conductivity, porosity, Prandtl number, radiation parameter and viscoelastic parameters on velocity and temperature profiles (in PST and PHF cases) are analyzed and discussed through graphs. Numerical values of wall temperature gradient in PST case and wall temperature in PHF case are obtained and tabulated for various values of the governing parameters. In this study Prandtl number also treated as variable inside the boundary layer because it depends on thermal conductivity. The results are also verified by using finite difference method.


Sign in / Sign up

Export Citation Format

Share Document