scholarly journals Derivatives of Meromorphic Functions with Multiple Zeros and Small Functions

2014 ◽  
Vol 2014 ◽  
pp. 1-10
Author(s):  
Pai Yang ◽  
Peiyan Niu

Letfzbe a meromorphic function inℂ, and letαz=Rzhz≢0, wherehzis a nonconstant elliptic function andRzis a rational function. Suppose that all zeros offzare multiple except finitely many andTr,α=oTr,fasr→∞. Thenf'z=αzhas infinitely many solutions.

2007 ◽  
Vol 8 (2) ◽  
pp. 483-491 ◽  
Author(s):  
Xuecheng Pang ◽  
Shahar Nevo ◽  
Lawrence Zalcman

2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Mingliang Fang ◽  
Degui Yang ◽  
Dan Liu

AbstractLet c be a nonzero constant and n a positive integer, let f be a transcendental meromorphic function of finite order, and let R be a nonconstant rational function. Under some conditions, we study the relationships between the exponent of convergence of zero points of $f-R$ f − R , its shift $f(z+nc)$ f ( z + n c ) and the differences $\Delta _{c}^{n} f$ Δ c n f .


2000 ◽  
Vol 20 (3) ◽  
pp. 895-910 ◽  
Author(s):  
GWYNETH M. STALLARD

Ruelle (Repellers for real analytic maps. Ergod. Th. & Dynam. Sys.2 (1982), 99–108) used results from statistical mechanics to show that, when a rational function $f$ is hyperbolic, the Hausdorff dimension of the Julia set, $\dim J(f)$, depends real analytically on $f$. We give a proof of the fact that $\dim J(f)$ is a continuous function of $f$ that does not depend on results from statistical mechanics and we show that this result can be extended to a class of transcendental meromorphic functions. This enables us to show that, for each $d \in (0,1)$, there exists a transcendental meromorphic function $f$ with $\dim J(f) = d$.


2010 ◽  
Vol 150 (2) ◽  
pp. 343-351 ◽  
Author(s):  
J. K. LANGLEY

AbstractLet f be a real meromorphic function of infinite order in the plane, with finitely many zeros and non-real poles. Then f″ has infinitely many non-real zeros.


2005 ◽  
Vol 78 (1) ◽  
pp. 17-26 ◽  
Author(s):  
Xiaojun Huang ◽  
Yongxing Gu

AbstractIn this paper, we prove that for a transcendental meromorphic function f(z) on the complex plane, the inequality T(r, f) < 6N (r, 1/(f2 f(k)−1)) + S(r, f) holds, where k is a positive integer. Moreover, we prove the following normality criterion: Let ℱ be a family of meromorphic functions on a domain D and let k be a positive integer. If for each ℱ ∈ ℱ, all zeros of ℱ are of multiplicity at least k, and f2 f(k) ≠ 1 for z ∈ D, then ℱ is normal in the domain D. At the same time we also show that the condition on multiple zeros of f in the normality criterion is necessary.


2001 ◽  
Vol 33 (6) ◽  
pp. 689-694 ◽  
Author(s):  
GWYNETH M. STALLARD

It is known that, if f is a hyperbolic rational function, then the Hausdorff, packing and box dimensions of the Julia set, J(f), are equal. In this paper it is shown that, for a hyperbolic transcendental meromorphic function f, the packing and upper box dimensions of J(f) are equal, but can be strictly greater than the Hausdorff dimension of J(f).


1997 ◽  
Vol 55 (3) ◽  
pp. 395-403 ◽  
Author(s):  
Tuen-Wai Ng ◽  
Chung-Chun Yang

In this paper, common right factors (in the sense of composition) of p1 + p2F and p3 + p4F are investigated. Here, F is a transcendental meromorphic function and pi's are non-zero polynomials. Moreover, we also prove that the quotient (p1 + p2F)/(p3 + p4F) is pseudo-prime under some restrictions on F and the pi's. As an application of our results, we have proved that R (z) H (z)is pseudo-prime for any nonconstant rational function R (z) and finite order periodic entire function H (z).


2013 ◽  
Vol 2013 ◽  
pp. 1-5 ◽  
Author(s):  
Abdallah El Farissi

We deal with the relationship between the small functions and the derivatives of solutions of higher-order linear differential equations f(k)+Ak-1f(k-1)+⋯+A0f=0,   k≥2, where Aj(z)  (j=0,1,…,k-1) are meromorphic functions. The theorems of this paper improve the previous results given by El Farissi, Belaïdi, Wang, Lu, Liu, and Zhang.


Sign in / Sign up

Export Citation Format

Share Document