scholarly journals Stability Criteria for Singular Stochastic Hybrid Systems with Mode-Dependent Time-Varying Delay

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Ming Zhao ◽  
Yueying Wang ◽  
Pingfang Zhou ◽  
Dengping Duan

This paper provides a delay-dependent criterion for a class of singular stochastic hybrid systems with mode-dependent time-varying delay. In order to reduce conservatism, a new Lyapunov-Krasovskii functional is constructed by decomposing the delay interval into multiple subintervals. Based on the new functional, a stability criterion is derived in terms of strict linear matrix inequality (LMI), which guarantees that the considered system is regular, impulse-free, and mean-square exponentially stable. Numerical examples are presented to illustrate the effectiveness of proposed method.

2013 ◽  
Vol 427-429 ◽  
pp. 1306-1310
Author(s):  
Jun Jun Hui ◽  
He Xin Zhang ◽  
Fei Meng ◽  
Xin Zhou

In this paper, we consider the problem of robust delay-dependent stability for a class of linear uncertain systems with interval time-varying delay. By using the directly Lyapunov-Krasovskii (L-K) functional method, integral inequality approach and the free weighting matrix technique, new less conservative stability criteria for the system is formulated in terms of linear matrix inequalities .Numerical examples are given to show the effectiveness of the proposed approach.


2011 ◽  
Vol 2011 ◽  
pp. 1-20 ◽  
Author(s):  
W. Weera ◽  
P. Niamsup

We study the robust stability criteria for uncertain neutral systems with interval time-varying delays and time-varying nonlinear perturbations simultaneously. The constraint on the derivative of the time-varying delay is not required, which allows the time-delay to be a fast time-varying function. Based on the Lyapunov-Krasovskii theory, we derive new delay-dependent stability conditions in terms of linear matrix inequalities (LMIs) which can be solved by various available algorithms. Numerical examples are given to demonstrate that the derived conditions are much less conservative than those given in the literature.


2013 ◽  
Vol 631-632 ◽  
pp. 1189-1194
Author(s):  
Chao Deng ◽  
Zhao Di Xu ◽  
Yu Bai ◽  
Xin Yuan Wang

This paper considers the robust stability criteria of uncertain system with time-varying delay. Firstly, by exploiting a new Lyapunov function that optimizes the segment of time delay and using the convexity property and free-weight method of the Linear Matrix Inequality, delay-dependent stability condition can be obtained for the asymptotical stability of the nominal system. Secondly, basing on the obtained condition, the corresponding linear matrix inequality can be obtained for the uncertain system. Finally, an example is given to demostrate the effectiveness and the merit of the proposed method.


2012 ◽  
Vol 2012 ◽  
pp. 1-20 ◽  
Author(s):  
Pin-Lin Liu

The problem of delay-range-dependent stability for T-S fuzzy system with interval time-varying delay is investigated. The constraint on the derivative of the time-varying delay is not required, which allows the time delay to be a fast time-varying function. By developing delay decomposition approach, integral inequalities approach (IIA), and Leibniz-Newton formula, the information of the delayed plant states can be taken into full consideration, and new delay-dependent sufficient stability criteria are obtained in terms of linear matrix inequalities (LMIs) which can be easily solved by various optimization algorithms. Simulation examples show resulting criteria outperform all existing ones in the literature. It is worth pointing out that our criteria are carried out more efficiently for computation and less conservatism of the proposed criteria.


2011 ◽  
Vol 48-49 ◽  
pp. 734-739 ◽  
Author(s):  
Dong Sheng Xu ◽  
Jun Kang Tian

This paper is concerned with delay-dependent stability for systems with interval time varying delay. By defining a new Lyapunov functional which contains a triple-integral term with the idea of decomposing the delay interval of time-varying delay, an improved criterion of asymptotic stability is derived in term of linear matrix inequalities. The criterion proves to be less conservative with fewer matrix variables than some previous ones. Finally, a numerical example is given to show the effectiveness of the proposed method.


2014 ◽  
Vol 651-653 ◽  
pp. 2339-2342
Author(s):  
Ting Ting Wang ◽  
Zhao Di Xu ◽  
Hong Su

This paper is concerned with the delay-dependent stability for linear systems. Through constructing a new augmented LKF and using a new integral inequality, the improved delay-dependent stability criteria are derived in terms of linear matrix inequalities, and it is established that the results have less conservativ`e than some existing stability conditions. Finally, numerical examples are given to illustrate the effectiveness of the proposed result.


2012 ◽  
Vol 2012 ◽  
pp. 1-16 ◽  
Author(s):  
Jianmin Jiao

This paper is concerned with stability analysis for singular systems with interval time-varying delay. By constructing a novel Lyapunov functional combined with reciprocally convex approach and linear matrix inequality (LMI) technique, improved delay-dependent stability criteria for the considered systems to be regular, impulse free, and stable are established. The developed results have advantages over some previous ones as they involve fewer decision variables yet less conservatism. Numerical examples are provided to demonstrate the effectiveness of the proposed stability results.


Processes ◽  
2021 ◽  
Vol 9 (8) ◽  
pp. 1445
Author(s):  
Cheung-Chieh Ku ◽  
Wen-Jer Chang ◽  
Kuan-Wei Huang

A novel delay-dependent stability criterion for Takagi-Sugeno (T-S) fuzzy systems with multiplicative noise is addressed in this paper subject to passivity performance. The general case of interval time-varying delay is considered for the practical control issue. For the criterion, an integral Lyapunov-Krasovskii function is proposed to derive some sufficient relaxed conditions and to avoid the derivative of the membership function. Moreover, a free-matrix inequality is adopted to deal with the delay terms such that the available derivative of time-varying delay is bigger than one. In order to employ a convex optimization algorithm to find the control gain, a projection lemma is applied to acquire the Linear Matrix Inequality (LMI) form of the sufficient conditions. With the obtained gains, a fuzzy controller is designed by the concept of Parallel Distributed Compensation (PDC) such that the delayed T-S fuzzy systems with multiplicative noise are asymptotically stable and passive in the mean square. Finally, a stabilization problem of the ship’s autopilot dynamic system and some comparisons are discussed during the simulation results.


2014 ◽  
Vol 2014 ◽  
pp. 1-7 ◽  
Author(s):  
Lei Ding ◽  
Hong-Bing Zeng ◽  
Wei Wang ◽  
Fei Yu

This paper investigates the stability of static recurrent neural networks (SRNNs) with a time-varying delay. Based on the complete delay-decomposing approach and quadratic separation framework, a novel Lyapunov-Krasovskii functional is constructed. By employing a reciprocally convex technique to consider the relationship between the time-varying delay and its varying interval, some improved delay-dependent stability conditions are presented in terms of linear matrix inequalities (LMIs). Finally, a numerical example is provided to show the merits and the effectiveness of the proposed methods.


Sign in / Sign up

Export Citation Format

Share Document