convexity property
Recently Published Documents


TOTAL DOCUMENTS

88
(FIVE YEARS 23)

H-INDEX

13
(FIVE YEARS 2)

2021 ◽  
Vol 2021 (12) ◽  
Author(s):  
Oleg Antipin ◽  
Jahmall Bersini ◽  
Francesco Sannino ◽  
Zhi-Wei Wang ◽  
Chen Zhang

Abstract The Weak Gravity Conjecture has recently been re-formulated in terms of a particle with non-negative self-binding energy. Because of the dual conformal field theory (CFT) formulation in the anti-de Sitter space, the conformal dimension ∆(Q) of the lowest-dimension operator with charge Q under some global U(1) symmetry must be a convex function of Q. This property has been conjectured to hold for any (unitary) conformal field theory and generalized to larger global symmetry groups. Here we refine and further test the convex charge conjecture via semiclassical computations for fixed charge sectors of different theories in various dimensions. We analyze the convexity properties of the leading and next-to-leading order terms stemming from the semiclassical computation, de facto, extending previous tests beyond the leading perturbative contributions and to arbitrary charges. In particular, the leading contribution is sufficient to test convexity in the semiclassical computations. We also consider intriguing cases in which the models feature a transition from real to complex conformal dimensions either as a function of the charge or number of matter fields. As a relevant example of the first kind, we investigate the O(N) model in 4 + ϵ dimensions. As an example of the second type, we consider the U(N) × U(M) model in 4 − ϵ dimensions. Both models display a rich dynamics where, by changing the number of matter fields and/or charge, one can achieve dramatically different physical regimes. We discover that whenever a complex conformal dimension appears, the real part satisfies the convexity property.


Author(s):  
Leonardo Riveaud ◽  
Mateos Diego ◽  
Pedro Walter Lamberti

Divergences have become a very useful tool for measuring similarity (or dissimilarity) between probability distributions. Depending on the field of application a more appropriate measure may be necessary. In this paper we introduce a family of divergences we call gamma-divergences. They are based on the convexity property of the functions that generate them. We demonstrate that these divergences verify all the usually required properties, and we extend them to weighted probability distribution. We investigate their properties in the context of kernel theory. Finally, we apply our findings to the analysis of simulated and real time series.


2021 ◽  
Vol 51 ◽  
pp. 74-95
Author(s):  
Aleksandr Vladimirovich Kolesnichenko

A logical scheme for constructing thermodynamics of anomalous stochastic systems based on the nonextensive two-parameter (κ, ς) -entropy of Sharma–Taneja–Mittal (SHTM) is considered. Thermodynamics within the framework (2 - q) -statistics of Tsallis was constructed, which belongs to the STM family of statistics. The approach of linear nonequilibrium thermodynamics to the construction of a family of nonlinear equations of Fokker−Planck−Kolmogorov (FPK), is used, correlated with the entropy of the STM, in which the stationary solution of the diffusion equation coincides with the corresponding generalized Gibbs distribution obtained from the extremality (κ, ς) - entropy condition of a non-additive stochastic system. Taking into account the convexity property of the Bregman divergence, it was shown that the principle of maximum equilibrium entropy is valid for (κ, ς) - systems, and also was proved the H - theorem determining the direction of the time evolution of the non-equilibrium state of the system. This result is extended also to non-equilibrium systems that evolve to a stationary state in accordance with the nonlinear FPK equation. The method of the ansatz- approach for solving non-stationary FPK equations is considered, which allows us to find the time dependence of the probability density distribution function for non-equilibrium anomalous systems. Received diffusive equations FPК can be used, in particular, at the analysis of diffusion of every possible epidemics and pandemics. The obtained diffusion equations of the FPK can be used, in particular, in the analysis of the spread of various epidemics and pandemics.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
S. H. Saker ◽  
J. Alzabut ◽  
A. G. Sayed ◽  
D. O’Regan

AbstractIn this paper, we prove some new Opial-type dynamic inequalities on time scales. Our results are obtained in frame of convexity property and by using the chain rule and Jensen and Hölder inequalities. For illustration purpose, we obtain some particular Opial-type inequalities reported in the literature.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Xue-Xiao You ◽  
Muhammad Aamir Ali ◽  
Hüseyin Budak ◽  
Praveen Agarwal ◽  
Yu-Ming Chu

AbstractIn the paper, the authors establish some new Hermite–Hadamard type inequalities for harmonically convex functions via generalized fractional integrals. Moreover, the authors prove extensions of the Hermite–Hadamard inequality for harmonically convex functions via generalized fractional integrals without using the harmonic convexity property for the functions. The results offered here are the refinements of the existing results for harmonically convex functions.


Author(s):  
Sarem H. Hadi ◽  
Zainab S. Madhi ◽  
Choonkil Park

The purpose of this study is to introduce a new concept of the modular space, which is CΩ-modular space, and then some of the convex properties are discussed. We also study finding fixed-point in CΩ-modular space.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Slavko Simić ◽  
Bandar Bin-Mohsin

AbstractIn this article we give two possible generalizations of the Hermite–Hadamard integral inequality for the class of twice differentiable functions, where the convexity property of the target function is not assumed in advance. They represent a refinement of this inequality in the case of convex/concave functions with numerous applications.


2021 ◽  
Vol 14 ◽  
pp. 227-235
Author(s):  
David A. Kosian ◽  
◽  
Leon A. Petrosyan ◽  

In the paper, the cooperative game with a hypergraph communication structure is considered. For this class of games, a new allocation rule was proposed by splitting the original game into a game between hyperlinks and games within them. The communication possibilities are described by the hypergraph in which the nodes are players and hyperlinks are the communicating subgroups of players. The game between hyperlinks and between players in each hyperlink is described. The payoff of each player is influenced by the actions of other players dependent on the distance between them on hypergraph. Constructed characteristic functions based on cooperative behaviour satisfy the convexity property. The results are shown by the example.


2021 ◽  
Vol 0 (0) ◽  
pp. 0
Author(s):  
Michael V. Klibanov ◽  
Thuy T. Le ◽  
Loc H. Nguyen ◽  
Anders Sullivan ◽  
Lam Nguyen

<p style='text-indent:20px;'>To compute the spatially distributed dielectric constant from the backscattering computationally simulated ane experimentally collected data, we study a coefficient inverse problem for a 1D hyperbolic equation. To solve this inverse problem, we establish a new version of the Carleman estimate and then employ this estimate to construct a cost functional, which is strictly convex on a convex bounded set of an arbitrary diameter in a Hilbert space. The strict convexity property is rigorously proved. This result is called the convexification theorem and it is the central analytical result of this paper. Minimizing this cost functional by the gradient descent method, we obtain the desired numerical solution to the coefficient inverse problems. We prove that the gradient descent method generates a sequence converging to the minimizer starting from an arbitrary point of that bounded set. We also establish a theorem confirming that the minimizer converges to the true solution as the noise in the measured data and the regularization parameter tend to zero. Unlike the methods, which are based on the optimization, our convexification method converges globally in the sense that it delivers a good approximation of the exact solution without requiring a good initial guess. Results of numerical studies of both computationally simulated and experimentally collected data are presented.</p>


Author(s):  
V.A. Srochko ◽  
◽  
E.V. Aksenyushkina ◽  
V.G. Antonik ◽  
◽  
...  

We consider a linear-quadratic optimal control problem with indefinite matrices and the interval control constraint. The problem also has a regularizationparameter in the functional. The approximate solution of the problem is carried out on subsets of admissible controls, which are formed using linear combinations of special functions with an orientation to the optimal control structure due to the maximum principle. As a result of this procedure, a finite-dimensional quadratic optimization problem with the interval constraint on variables is obtained. The following relations between the variational problem and its finite-dimensional model are established: the convexity property of the optimal control problem is preserved for finite-dimensional model; a nonconvex optimal control problem under a certain condition on the regularization parameter (estimate from below) is approximated by a convex quadratic problem, which is solved in a finite number of operations;a special non-convex optimal control problem with an upper bound on the regularization parameter passes into the problem of minimizing a concave function on a finite set of points. A special case of a non-convex optimal control problem for the maximum of the norm of the final state is distinguished. Two procedures for improving the extreme points of finite-dimensional model are constructed, which reduce the computational costs for the global solution of the problem within the framework of the linearization method.


Sign in / Sign up

Export Citation Format

Share Document