scholarly journals On the Zweier Sequence Spaces of Fuzzy Numbers

Author(s):  
Mehmet Şengönül

It was given a prototype constructing a new sequence space of fuzzy numbers by means of the matrix domain of a particular limitation method. That is we have constructed the Zweier sequence spaces of fuzzy numbers[ℓ∞(F)]Zη,[c(F)]Zη, and[c0(F)]Zηconsisting of all sequencesu=(uk)such thatZηuin the spacesℓ∞(F),c(F), andc0(F), respectively. Also, we prove that[ℓ∞(F)]Zη,[c(F)]Zη, and[c0(F)]Zηare linearly isomorphic to the spacesℓ∞(F),c(F), andc0(F), respectively. Additionally, theα(r)-,β(r)-, andγ(r)-duals of the spaces[ℓ∞(F)]Zη,[c(F)]Zη, and[c0(F)]Zηhave been computed. Furthermore, two theorems concerning matrix map have been given.

Mathematics ◽  
2018 ◽  
Vol 6 (11) ◽  
pp. 268 ◽  
Author(s):  
Kuddusi Kayaduman ◽  
Fevzi Yaşar

In 1978, the domain of the Nörlund matrix on the classical sequence spaces lp and l∞ was introduced by Wang, where 1 ≤ p < ∞. Tuğ and Başar studied the matrix domain of Nörlund mean on the sequence spaces f0 and f in 2016. Additionally, Tuğ defined and investigated a new sequence space as the domain of the Nörlund matrix on the space of bounded variation sequences in 2017. In this article, we defined new space and and examined the domain of the Nörlund mean on the bs and cs, which are bounded and convergent series, respectively. We also examined their inclusion relations. We defined the norms over them and investigated whether these new spaces provide conditions of Banach space. Finally, we determined their α­, β­, γ­duals, and characterized their matrix transformations on this space and into this space.


2001 ◽  
Vol 26 (11) ◽  
pp. 671-678
Author(s):  
Suthep Suantai

We give the matrix characterizations from Nakano vector-valued sequence spaceℓ(X,p)andFr(X,p)into the sequence spacesEr,ℓ∞,ℓ¯∞(q),bs, andcs, wherep=(pk)andq=(qk)are bounded sequences of positive real numbers such thatPk>1for allk∈ℕandr≥0.


Filomat ◽  
2016 ◽  
Vol 30 (5) ◽  
pp. 1233-1241
Author(s):  
Vatan Karakaya ◽  
Necip Imşek ◽  
Kadri Doğan

In this work, we define new sequence spaces by using the matrix obtained by product of factorable matrix and generalized difference matrix of order m. Afterward, we investigate topological structure which are completeness, AK-property, AD-property. Also, we compute the ?-, ?- and ?- duals, and obtain bases for these sequence spaces. Finally we give necessary and sufficient conditions on matrix transformation between these new sequence spaces and c,??.


2020 ◽  
Vol 2020 (1) ◽  
Author(s):  
Hadi Roopaei

AbstractIn this paper, we investigate some properties of the domains $c(C^{n})$ c ( C n ) , $c_{0}(C^{n})$ c 0 ( C n ) , and $\ell _{p}(C^{n})$ ℓ p ( C n ) $(0< p<1)$ ( 0 < p < 1 ) of the Copson matrix of order n, where c, $c_{0}$ c 0 , and $\ell _{p}$ ℓ p are the spaces of all convergent, convergent to zero, and p-summable real sequences, respectively. Moreover, we compute the Köthe duals of these spaces and the lower bound of well-known operators on these sequence spaces. The domain $\ell _{p}(C^{n})$ ℓ p ( C n ) of Copson matrix $C^{n}$ C n of order n in the sequence space $\ell _{p}$ ℓ p , the norm of operators on this space, and the norm of Copson operator on several matrix domains have been investigated recently in (Roopaei in J. Inequal. Appl. 2020:120, 2020), and the present study is a complement of our previous research.


Author(s):  
Johann Boos ◽  
Toivo Leiger

The paper aims to develop for sequence spacesEa general concept for reconciling certain results, for example inclusion theorems, concerning generalizations of the Köthe-Toeplitz dualsE×(×∈{α,β})combined with dualities(E,G),G⊂E×, and theSAK-property (weak sectional convergence). TakingEβ:={(yk)∈ω:=𝕜ℕ|(ykxk)∈cs}=:Ecs, wherecsdenotes the set of all summable sequences, as a starting point, then we get a general substitute ofEcsby replacingcsby any locally convex sequence spaceSwith sums∈S′(in particular, a sum space) as defined by Ruckle (1970). This idea provides a dual pair(E,ES)of sequence spaces and gives rise for a generalization of the solid topology and for the investigation of the continuity of quasi-matrix maps relative to topologies of the duality(E,Eβ). That research is the basis for general versions of three types of inclusion theorems: two of them are originally due to Bennett and Kalton (1973) and generalized by the authors (see Boos and Leiger (1993 and 1997)), and the third was done by Große-Erdmann (1992). Finally, the generalizations, carried out in this paper, are justified by four applications with results around different kinds of Köthe-Toeplitz duals and related section properties.


1986 ◽  
Vol 100 (1) ◽  
pp. 151-159 ◽  
Author(s):  
M. A. Sofi

For a given locally convex space, it is always of interest to find conditions for its nuclearity. Well known results of this kind – by now already familiar – involve the use of tensor products, diametral dimension, bilinear forms, generalized sequence spaces and a host of other devices for the characterization of nuclear spaces (see [9]). However, it turns out, these nuclearity criteria are amenable to a particularly simple formulation in the setting of certain sequence spaces; an elegant example is provided by the so-called Grothendieck–Pietsch (GP, for short) criterion for nuclearity of a sequence space (in its normal topology) in terms of the summability of certain numerical sequences.


1993 ◽  
Vol 113 (2) ◽  
pp. 329-334 ◽  
Author(s):  
Jesús M. F. Castillo ◽  
Fernando Sánchez

In [11], Partington proved that if λ is a Banach sequence space with a monotone basis having the Banach-Saks property, and (Xn) is a sequence of Banach spaces each having the Banach-Saks property, then the vector sequence space ΣλXn has this same property. In addition, Partington gave an example showing that if λ and each Xn, have the weak Banach-Saks property, then ΣλXn need not have the weak Banach-Saks property.


2016 ◽  
Vol 33 (06) ◽  
pp. 1650047 ◽  
Author(s):  
Sanjiv Kumar ◽  
Ritika Chopra ◽  
Ratnesh R. Saxena

The aim of this paper is to develop an effective method for solving matrix game with payoffs of trapezoidal fuzzy numbers (TrFNs). The method always assures that players’ gain-floor and loss-ceiling have a common TrFN-type fuzzy value and hereby any matrix game with payoffs of TrFNs has a TrFN-type fuzzy value. The matrix game is first converted to a fuzzy linear programming problem, which is converted to three different optimization problems, which are then solved to get the optimum value of the game. The proposed method has an edge over other method as this focuses only on matrix games with payoff element as symmetric trapezoidal fuzzy number, which might not always be the case. A numerical example is given to illustrate the method.


2020 ◽  
Vol 39 (2) ◽  
pp. 261-274
Author(s):  
M. Jeyaram Bharathi ◽  
S. Velmurugan ◽  
N. Subramanian ◽  
R. Srikanth

Sign in / Sign up

Export Citation Format

Share Document