scholarly journals Multiobjective Fractional Programming Involving Generalized Semilocally V-Type I-Preinvex and Related Functions

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Hachem Slimani ◽  
Shashi Kant Mishra

We study a nonlinear multiple objective fractional programming with inequality constraints where each component of functions occurring in the problem is considered semidifferentiable along its own direction instead of the same direction. New Fritz John type necessary and Karush-Kuhn-Tucker type necessary and sufficient efficiency conditions are obtained for a feasible point to be weakly efficient or efficient. Furthermore, a general Mond-Weir dual is formulated and weak and strong duality results are proved using concepts of generalized semilocally V-type I-preinvex functions. This contribution extends earlier results of Preda (2003), Mishra et al. (2005), Niculescu (2007), and Mishra and Rautela (2009), and generalizes results obtained in the literature on this topic.

2012 ◽  
Vol 22 (1) ◽  
pp. 3-18 ◽  
Author(s):  
S.K. Mishra ◽  
B.B. Upadhyay

In this paper, we shall establish necessary and sufficient optimality conditions for a feasible solution to be efficient for a nonsmooth multiobjective fractional programming problem involving ?-pseudolinear functions. Furthermore, we shall show equivalence between efficiency and proper efficiency under certain boundedness condition. We have also obtained weak and strong duality results for corresponding Mond-Weir subgradient type dual problem. These results extend some earlier results on efficiency and duality to multiobjective fractional programming problems involving ?-pseudolinear and pseudolinear functions.


2009 ◽  
Vol 19 (1) ◽  
pp. 63-73
Author(s):  
I.M. Stancu-Minasian ◽  
Gheorghe Dogaru ◽  
Mădălina Stancu

We establish duality results under generalized convexity assumptions for a multiobjective nonlinear fractional programming problem involving d -type-I n -set functions. Our results generalize the results obtained by Preda and Stancu-Minasian [24], [25].


2013 ◽  
Vol 2013 ◽  
pp. 1-10 ◽  
Author(s):  
Jen-Chwan Liu ◽  
Chun-Yu Liu

We establish properly efficient necessary and sufficient optimality conditions for multiobjective fractional programming involving nonsmooth generalized(ℱ,b,ϕ,ρ,θ)-univex functions. Utilizing the necessary optimality conditions, we formulate the parametric dual model and establish some duality results in the framework of generalized(ℱ,b,ϕ,ρ,θ)-univex functions.


2009 ◽  
Vol 19 (1) ◽  
pp. 49-61
Author(s):  
Antoan Bătătorescu ◽  
Miruna Beldiman ◽  
Iulian Antonescu ◽  
Roxana Ciumara

Necessary and sufficient optimality conditions are established for a class of nondifferentiable minimax fractional programming problems with square root terms. Subsequently, we apply the optimality conditions to formulate a parametric dual problem and we prove some duality results.


2013 ◽  
Vol 2013 ◽  
pp. 1-7
Author(s):  
Shun-Chin Ho

We study nonsmooth multiobjective fractional programming problem containing local Lipschitz exponentialB-p,r-invex functions with respect toηandb. We introduce a new concept of nonconvex functions, called exponentialB-p,r-invex functions. Base on the generalized invex functions, we establish sufficient optimality conditions for a feasible point to be an efficient solution. Furthermore, employing optimality conditions to perform Mond-Weir type duality model and prove the duality theorems including weak duality, strong duality, and strict converse duality theorem under exponentialB-p,r-invexity assumptions. Consequently, the optimal values of the primal problem and the Mond-Weir type duality problem have no duality gap under the framework of exponentialB-p,r-invexity.


2019 ◽  
Vol 26 (3) ◽  
pp. 393-404 ◽  
Author(s):  
Ramu Dubey ◽  
S. K. Gupta

Abstract The purpose of this paper is to study a nondifferentiable multiobjective fractional programming problem (MFP) in which each component of objective functions contains the support function of a compact convex set. For a differentiable function, we introduce the class of second-order {(C,\alpha,\rho,d)-V} -type-I convex functions. Further, Mond–Weir- and Wolfe-type duals are formulated for this problem and appropriate duality results are proved under the aforesaid assumptions.


Sign in / Sign up

Export Citation Format

Share Document