scholarly journals A Physically Based Runoff Model Analysis of the Querétaro River Basin

2014 ◽  
Vol 2014 ◽  
pp. 1-12 ◽  
Author(s):  
Carlos Javier Villa Alvarado ◽  
Eladio Delgadillo-Ruiz ◽  
Carlos Alberto Mastachi-Loza ◽  
Enrique González-Sosa ◽  
Ramos Salinas Norma Maricela

Today the knowledge of physical parameters of a basin is essential to know adequately the rainfall-runoff process; it is well known that the specific characteristics of each basin such as temperature, geographical location, and elevation above sea level affect the maximum discharge and the basin time response. In this paper a physically based model has been applied, to analyze water balance by evaluating the volume rainfall-runoff using SHETRAN and hydrometric data measurements in 2003. The results have been compared with five ETp different methodologies in the Querétaro river basin in central Mexico. With these results the main effort of the authorities should be directed to better control of land-use changes and to working permanently in the analysis of the related parameters, which will have a similar behavior to changes currently being introduced and presented in observed values in this basin. This methodology can be a strong base for sustainable water management in a basin, the prognosis and effect of land-use changes, and availability of water and also can be used to determine application of known basin parameters, basically depending on land-use, land-use changes, and climatological database to determine the water balance in a basin.

2002 ◽  
Vol 6 (5) ◽  
pp. 859-881 ◽  
Author(s):  
Z. Liu ◽  
E. Todini

Abstract. This paper introduces TOPKAPI (TOPographic Kinematic APproximation and Integration), a new physically-based distributed rainfall-runoff model deriving from the integration in space of the kinematic wave model. The TOPKAPI approach transforms the rainfall-runoff and runoff routing processes into three ‘structurally-similar’ non-linear reservoir differential equations describing different hydrological and hydraulic processes. The geometry of the catchment is described by a lattice of cells over which the equations are integrated to lead to a cascade of non-linear reservoirs. The parameter values of the TOPKAPI model are shown to be scale independent and obtainable from digital elevation maps, soil maps and vegetation or land use maps in terms of slope, soil permeability, roughness and topology. It can be shown, under simplifying assumptions, that the non-linear reservoirs aggregate into three reservoir cascades at the basin scale representing the soil, the surface and the drainage network, following the topographic and geomorphologic elements of the catchment, with parameter values which can be estimated directly from the small scale ones. The main advantage of this approach lies in its capability of being applied at increasing spatial scales without losing model and parameter physical interpretation. The model is foreseen to be suitable for land-use and climate change impact assessment; for extreme flood analysis, given the possibility of its extension to ungauged catchments; and last but not least as a promising tool for use with General Circulation Models (GCMs). To demonstrate the quality of the comprehensive distributed/lumped TOPKAPI approach, this paper presents a case study application to the Upper Reno river basin with an area of 1051 km2 based on a DEM grid scale of 200 m. In addition, a real-world case of applying the TOPKAPI model to the Arno river basin, with an area of 8135 km2 and using a DEM grid scale of 1000 m, for the development of the real-time flood forecasting system of the Arno river will be described. The TOPKAPI model results demonstrate good agreement between observed and simulated responses in the two catchments, which encourages further developments of the model. Keywords: rainfall-runoff modelling, topographic, kinematic wave approximation, spatial integration, physical meaning, non-linear reservoir model, distributed and lumped


2004 ◽  
Vol 8 (5) ◽  
pp. 903-922 ◽  
Author(s):  
M. Bari ◽  
K. R. J. Smettem

Abstract. A conceptual water balance model is presented to represent changes in monthly water balance following land use changes. Monthly rainfall–runoff, groundwater and soil moisture data from four experimental catchments in Western Australia have been analysed. Two of these catchments, "Ernies" (control, fully forested) and "Lemon" (54% cleared) are in a zone of mean annual rainfall of 725 mm, while "Salmon" (control, fully forested) and "Wights" (100% cleared) are in a zone with mean annual rainfall of 1125 mm. At the Salmon forested control catchment, streamflow comprises surface runoff, base flow and interflow components. In the Wights catchment, cleared of native forest for pasture development, all three components increased, groundwater levels rose significantly and stream zone saturated area increased from 1% to 15% of the catchment area. It took seven years after clearing for the rainfall–runoff generation process to stabilise in 1984. At the Ernies forested control catchment, the permanent groundwater system is 20 m below the stream bed and so does not contribute to streamflow. Following partial clearing of forest in the Lemon catchment, groundwater rose steadily and reached the stream bed by 1987. The streamflow increased in two phases: (i) immediately after clearing due to reduced evapotranspiration, and (ii) through an increase in the groundwater-induced stream zone saturated area after 1987. After analysing all the data available, a conceptual monthly model was created, comprising four inter-connecting stores: (i) an upper zone unsaturated store, (ii) a transient stream zone store, (ii) a lower zone unsaturated store and (iv) a saturated groundwater store. Data such as rooting depth, Leaf Area Index, soil porosity, profile thickness, depth to groundwater, stream length and surface slope were incorporated into the model as a priori defined attributes. The catchment average values for different stores were determined through matching observed and predicted monthly hydrographs. The observed and predicted monthly runoff for all catchments matched well with coefficients of determination (R2) ranging from 0.68 to 0.87. Predictions were relatively poor for: (i) the Ernies catchment (lowest rainfall, forested), and (ii) months with very high flows. Overall, the predicted mean annual streamflow was within ±8% of the observed values. Keywords: monthly streamflow, land use change, conceptual model, data-based approach, groundwater


2011 ◽  
Vol 52 (No. 6) ◽  
pp. 239-244 ◽  
Author(s):  
P. Kovář

The paper is focused on the impact of land use changes on water regime. First, an emphasis was given to what extent the main components of the water balance on the experimental catchment Všeminka (region Vsetínské Hills) were influenced. For this reason, the WBCM-5 model was implemented for the period of 10 years in a daily step with a particular reference to simulate the components of direct runoff and of subsurface water recharge. In the selected years of the period 1990–2000, the major changes were made in land use and also the significant fluctuation of rainfall-runoff regimes were observed (e.g. dry year 1992 and flood year 1997). After WBCM-5 parameter calibration it was found that some water balance components can change in relation to substantial land use changes even up to tens of percent in a balance-consideration, i.e. in daily, monthly and yearly or decade values, namely the components of interception and also of direct runoff and of subsurface water recharge. However, a different situation appears when investigating significant short-term rainfall-runoff processes. There were about seven real flood events analysed using the model KINFIL-2 (time step 0.5 hr) during the same period of about 10 years on the same catchment. Furthermore, some land use change positive or negative scenarios were also analysed there. As opposed to long-term water balance analyses, there was never achieved any greater differences in the hydrograph peak or volume than 10%. Summarising, it is always important to distinguish a possible land use change impact in either long-term balance or short-term runoff consideration, otherwise a misunderstanding might be easily made, as can often be found when commenting on the impact on floods in some mass media.


2009 ◽  
Vol 4 (No. 1) ◽  
pp. 1-9
Author(s):  
P. Kovář ◽  
V. Kadlec

The paper reports on the flood events on the forested Hukava catchment. It describes practical implementation of the KINFIL rainfall-runoff model. This model has been used for the reconstruction of the rainfall-runoff events and thus for the calibration of its parameters. The model was subsequently used to simulate the design discharges with an event duration of t<sub>d</sub> = 30, 60, and 300 min in the period of recurrence of 100 years, and during the scenario simulations of the land use change when 40% and 80% of the forest in the catchment had been cleared out and then replaced by permanent grasslands. The implementation of the KINFIL model supported by GIS proved to be a proper method for the flood runoff assessment on small catchments, during which different scenarios of the land use changes were tested.


Sign in / Sign up

Export Citation Format

Share Document