scholarly journals Inferior Mean of Measures on Curves and Subspaces

2014 ◽  
Vol 2014 ◽  
pp. 1-9
Author(s):  
Yevgenya Movshovich

We obtain new sharp upper bounds of the inferior mean for positive harmonic functions defined by finite boundary measures that lie on curves or subspaces of the boundary of the half-space.

1948 ◽  
Vol 44 (2) ◽  
pp. 289-291 ◽  
Author(s):  
S. Verblunsky

If H(ξ, η) is a harmonic function which is defined and positive in η > 0, then there is a non-negative number D and a bounded non-decreasing function G(x) such that(For a proof, see Loomis and Widder, Duke Math. J. 9 (1942), 643–5.) If we writewhere λ > 1, then the equationdefines a harmonic function h which is positive in υ > 0. Hence there is a non-negative number d and a bounded non-decreasing function g(x) such thatThe problem of finding the connexion between the functions G(x) and g(x) has been mentioned by Loomis (Trans. American Math. Soc. 53 (1943), 239–50, 244).


Analysis ◽  
2019 ◽  
Vol 39 (2) ◽  
pp. 59-64
Author(s):  
Yoichi Miyazaki

Abstract We give another proof of Poisson’s integral formula for harmonic functions in a ball or a half space by using heat kernels with Green’s formula. We wish to emphasize that this method works well even for a half space, which is an unbounded domain; the functions involved are integrable, since the heat kernel decays rapidly. This method needs no trick such as the subordination identity, which is indispensable when applying the Fourier transform method for a half space.


Sign in / Sign up

Export Citation Format

Share Document