Growth of positive harmonic functions and Kleinian group limit sets of zero planar measure and hausdorf dimension two In celebration of Nico Kuiper's sixtieth birthday

Author(s):  
Dennis Sullivan
2019 ◽  
Vol 2019 (746) ◽  
pp. 149-170
Author(s):  
Pekka Pankka ◽  
Juan Souto

Abstract We prove that Kleinian groups whose limit sets are Cantor sets of Hausdorff dimension < 1 are free. On the other hand we construct for any ε > 0 an example of a non-free purely hyperbolic Kleinian group whose limit set is a Cantor set of Hausdorff dimension < 1 + ε.


1948 ◽  
Vol 44 (2) ◽  
pp. 289-291 ◽  
Author(s):  
S. Verblunsky

If H(ξ, η) is a harmonic function which is defined and positive in η > 0, then there is a non-negative number D and a bounded non-decreasing function G(x) such that(For a proof, see Loomis and Widder, Duke Math. J. 9 (1942), 643–5.) If we writewhere λ > 1, then the equationdefines a harmonic function h which is positive in υ > 0. Hence there is a non-negative number d and a bounded non-decreasing function g(x) such thatThe problem of finding the connexion between the functions G(x) and g(x) has been mentioned by Loomis (Trans. American Math. Soc. 53 (1943), 239–50, 244).


Sign in / Sign up

Export Citation Format

Share Document