scholarly journals Application of Passivity-Based Control and Time-Frequency Representation in a Doubly Fed Induction Generator System

2015 ◽  
Vol 2015 ◽  
pp. 1-9
Author(s):  
Yingpei Liu ◽  
Haiping Liang

In order to improve the performance of a doubly fed induction generator (DFIG) system, we put forward a high performance nonlinear passivity-based control (PBC) method on DFIG. Firstly, we build a PBC mathematical model for DFIG. We design the passive controller for the inner loop in the control system based on passivity theory. Then we calculate the rotor’s control voltages which are modulated afterwards to pulse to control the rotor side converter. The maximal wind energy capture is effectively realized. The rotor speed and DFIG currents fast track their expected values. The independent regulation of the stator active power and reactive power is achieved. Finally we perform simulations to verify the effectiveness of the proposed method. Furthermore, we employ the Wigner-Ville distribution (WVD) and continuous wavelet transform (CWT) as two time-frequency representation methods to indicate that the proposed method in the paper performs well from the perspective of energy distribution in time and frequency domain.

Energies ◽  
2021 ◽  
Vol 14 (20) ◽  
pp. 6766
Author(s):  
Norbert Klaes ◽  
Florian Pöschke ◽  
Horst Schulte

The doubly fed induction generator is widely used in wind power applications. For stand-alone operation of this machine, the control of the stator flux with fixed voltage and frequency has been proposed. This paper extends the stator flux control of the doubly fed induction machine by droop mechanisms, which vary the setpoint of flux magnitude and frequency depending on active and reactive power. This gives the doubly fed induction generator system unknown grid supporting and grid forming performance. The validation of the proposed control scheme has been conducted on a 10kVA testbed system. The closed-loop behavior of the system has been proven to enable grid-tied and islanded operation with the same control structure. The system response to load changes and islanding events show no disruptive transients in both conditions.


This paper deals with the operation of doubly fed induction generator (DFIG) with an integrated active filter capabilities using grid-side converter (GSC). The main contribution of this work lies in the control of GSC for supplying harmonics in addition to its slip power transfer. The rotor-side converter (RSC) is used for attaining maximum power extraction and to supply required reactive power to DFIG. This wind energy conversion system (WECS) works as a static compensator (STATCOM) for supplying harmonics even when the wind turbine is in shutdown condition. Control algorithms of both GSC and RSC are presented in detail. The proposed DFIG-based WECS is simulated using MATLAB/Simulink.


2020 ◽  
Vol 9 (1) ◽  
pp. 30-38 ◽  
Author(s):  
Zahra Rafiee ◽  
Mansour Rafiee ◽  
Mohammad Reza Aghamohammadi

The paper presents the transient behavior of the doubly fed induction generator (DFIG) in the wind turbine (WT) in the normal and voltage dip condition. When voltage dip occurs in to the grid, the rotor current increases and the DC-link voltage increases too and start to oscilate. In this paper, the proportional integral (PI) controllers are used to control the DFIG-basedwind farms for regulating the electronic devices including rotor side converter (RSC) and grid side converter (GSC) to control the active and reactive power of DFIG. The PI parameters are tuned by imperialist competitive algorithm (ICA). So, the transient behavour of the DFIG-based WF is explors when the voltage dip occurs. Hence, the induced electric motive force in to the rotor is measured. Also, an existed uncertainty for mutual inductance is considered caused by saturated curve during three-phase fault conditions and the bahavour of DFIG-based WT is examined and analyzed. All of simulation is done by Matlab/Simulink®.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1511
Author(s):  
Paweł Kroplewski ◽  
Marcin Morawiec ◽  
Andrzej Jąderko ◽  
Charles Odeh

The control system for a Doubly Fed Induction Generator (DFIG) supplied by a grid-connected Current Source Converter (CSC) is presented in this paper. Nonlinear transformation of DFIG model to the multi-scalar form is proposed. The nonlinear control strategy of active and reactive power of DFIG is realized by feedback linearization. In the proposed control scheme, the DFIG model and CSI parameters are included. Two Proportional-Integral (PI) controllers are dedicated for the control of the respective active and reactive powers. The control variables are the dc-link input voltage vector and the angular speed of the inverter output current. The proposed control approach is characterized by satisfactional dynamics and provides enhanced quality of the power transferred to the grid. In the simulation, evaluation of the characteristic operating states of the generator system, correctness of the feedback linearization and the dynamics of active and reactive power control loops are studied. Simulation results are adequately provided.


Sign in / Sign up

Export Citation Format

Share Document