scholarly journals Cuckoo Search Algorithm Based on Repeat-Cycle Asymptotic Self-Learning and Self-Evolving Disturbance for Function Optimization

2015 ◽  
Vol 2015 ◽  
pp. 1-12 ◽  
Author(s):  
Jie-sheng Wang ◽  
Shu-xia Li ◽  
Jiang-di Song

In order to improve convergence velocity and optimization accuracy of the cuckoo search (CS) algorithm for solving the function optimization problems, a new improved cuckoo search algorithm based on the repeat-cycle asymptotic self-learning and self-evolving disturbance (RC-SSCS) is proposed. A disturbance operation is added into the algorithm by constructing a disturbance factor to make a more careful and thorough search near the bird’s nests location. In order to select a reasonable repeat-cycled disturbance number, a further study on the choice of disturbance times is made. Finally, six typical test functions are adopted to carry out simulation experiments, meanwhile, compare algorithms of this paper with two typical swarm intelligence algorithms particle swarm optimization (PSO) algorithm and artificial bee colony (ABC) algorithm. The results show that the improved cuckoo search algorithm has better convergence velocity and optimization accuracy.

Author(s):  
Venkateswarlu Chimmiri

Optimization is of great interest and it has widespread applications in engineering and science. It has become a major technology contributor to the growth of industry. It is extensively used in solving a wide variety of problems in design, operation, and analysis of engineering and technological processes. Optimization of large-scale problems pose difficulties concerning to dimensionality, differentiability, multimodality and nonlinearity in objective functions and constraints. In order to overcome such difficulties, there has been a rapidly growing interest in advanced optimization algorithms. Stochastic and evolutionary optimization algorithms are increasingly used to solve challenging optimization problems. These algorithms include genetic algorithm, simulated annealing, differential evolution, ant colony optimization, tabu search, particle swarm optimization, artificial bee colony algorithm, and cuckoo search algorithm. These algorithms are typically inspired by some phenomena from nature and they are robust. These algorithms do not require any gradient information and are even suitable to solve discrete optimization problems. These methods are extensively used to solve the optimization problems concerning to systems that are highly nonlinear, high dimensional, and noisy or for solving problems that are not easily solved by classical deterministic methods of optimization.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1840
Author(s):  
Nicolás Caselli ◽  
Ricardo Soto ◽  
Broderick Crawford ◽  
Sergio Valdivia ◽  
Rodrigo Olivares

Metaheuristics are intelligent problem-solvers that have been very efficient in solving huge optimization problems for more than two decades. However, the main drawback of these solvers is the need for problem-dependent and complex parameter setting in order to reach good results. This paper presents a new cuckoo search algorithm able to self-adapt its configuration, particularly its population and the abandon probability. The self-tuning process is governed by using machine learning, where cluster analysis is employed to autonomously and properly compute the number of agents needed at each step of the solving process. The goal is to efficiently explore the space of possible solutions while alleviating human effort in parameter configuration. We illustrate interesting experimental results on the well-known set covering problem, where the proposed approach is able to compete against various state-of-the-art algorithms, achieving better results in one single run versus 20 different configurations. In addition, the result obtained is compared with similar hybrid bio-inspired algorithms illustrating interesting results for this proposal.


2017 ◽  
Vol 116 ◽  
pp. 63-78 ◽  
Author(s):  
Geng Sun ◽  
Yanheng Liu ◽  
Ming Yang ◽  
Aimin Wang ◽  
Shuang Liang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document