parameter configuration
Recently Published Documents


TOTAL DOCUMENTS

163
(FIVE YEARS 64)

H-INDEX

13
(FIVE YEARS 3)

Drones ◽  
2022 ◽  
Vol 6 (1) ◽  
pp. 22
Author(s):  
Esmot Ara Tuli ◽  
Mohtasin Golam ◽  
Dong-Seong Kim ◽  
Jae-Min Lee

The growing need for wireless communication has resulted in the widespread usage of unmanned aerial vehicles (UAVs) in a variety of applications. Designing a routing protocol for UAVs is paramount as well as challenging due to its dynamic attributes. The difficulty stems from features other than mobile ad hoc networks (MANET), such as aerial mobility in 3D space and frequently changing topology. This paper analyzes the performance of four topology-based routing protocols, dynamic source routing (DSR), ad hoc on-demand distance vector (AODV), geographic routing protocol (GRP), and optimized link state routing (OLSR), by using practical simulation software OPNET 14.5. Performance evaluation carries out various metrics such as throughput, delay, and data drop rate. Moreover, the performance of the OLSR routing protocol is enhanced and named “E-OLSR” by tuning parameters and reducing holding time. The optimized E-OLSR settings provide better performance than the conventional request for comments (RFC 3626) in the experiment, making it suitable for use in UAV ad hoc network (UANET) environments. Simulation results indicate the proposed E-OLSR outperforms the existing OLSR and achieves supremacy over other protocols mentioned in this paper.


2021 ◽  
Vol 11 (21) ◽  
pp. 10446
Author(s):  
Cheng Chi ◽  
Yanyan Wang ◽  
Shasha Wu ◽  
Jian Zhang

With the development of the social economy and the improvement of the consumption concept, a new business model combining offline and online has been promoted. The warehousing system is one of the important links of commodity production and circulation, which involves storage, sorting, and distribution. It has a significant impact on the operation cost and the efficiency of the whole logistics system. The progress of robot technology, the Internet of things, and artificial intelligence technology promotes the automation and intelligence of storage systems. The Robotic Mobile Fulfillment Systems (RMFS), which takes the automatic guided vehicles (AGVs) as the way of handling and picking, greatly improves the space utilization, operation efficiency, and flexibility of the system. This paper studies the RMFS with fixed shelves and establishes the performance evaluation model of the picking system considering the AGVs congestion by establishing the queuing network. The effectiveness of the model is verified by simulation, and the optimization of system parameter configuration is further discussed according to the experimental data.


2021 ◽  
Author(s):  
Sophy Elizabeth Oliver ◽  
Coralia Cartis ◽  
Iris Kriest ◽  
Simon F. B. Tett ◽  
Samar Khatiwala

Abstract. The performance of global ocean biogeochemical models, and the Earth System Models in which they are embedded, can be improved by systematic calibration of the parameter values against observations. However, such tuning is seldom undertaken as these models are computationally very expensive. Here we investigate the performance of DFO-LS, a local, derivative-free optimisation algorithm which has been designed for computationally expensive models with irregular model-data misfit landscapes typical of biogeochemical models. We use DFO-LS to calibrate six parameters of a relatively complex global ocean biogeochemical model (MOPS) against synthetic dissolved oxygen, inorganic phosphate and inorganic nitrate observations from a reference run of the same model with a known parameter configuration. The performance of DFO-LS is compared with that of CMA-ES, another derivative-free algorithm that was applied in a previous study to the same model in one of the first successful attempts at calibrating a global model of this complexity. We find that DFO-LS successfully recovers 5 of the 6 parameters in approximately 40 evaluations of the misfit function (each one requiring a 3000 year run of MOPS to equilibrium), while CMA-ES needs over 1200 evaluations. Moreover, DFO-LS reached a baseline misfit, defined by observational noise, in just 11–14 evaluations, whereas CMA-ES required approximately 340 evaluations. We also find that the performance of DFO-LS is not significantly affected by observational sparsity, however fewer parameters were successfully optimised in the presence of observational uncertainty. The results presented here suggest that DFO-LS is sufficiently inexpensive and robust to apply to the calibration of complex, global ocean biogeochemical models.


2021 ◽  
Author(s):  
R. Chin ◽  
P. S. Effertz ◽  
I. Pires ◽  
N. Enzinger

Abstract Electron Beam Welding (EBW) is a highly effective and accurate welding process that is being increasingly used in industrial work and is of growing importance in manufacturing. In the current study, solidification cracking in EBW of a CuCr1Zr cylindrical geometry was explored. To investigate and prevent occurrence of hot cracking, a thermomechanically coupled numerical model was developed using Finite Element Method (FEM). An additional heat source was considered, in order to influence the resulting residual stress state, namely to minimize tensile stresses in the fusion zone during solidification. Hence, a methodical assessment of relevant parameters, such as the power, the diameter of the additional heat source and the distances between both heat sources was employed using Design of Experiments (DoE). It was found that for a particular parameter configuration, solidification cracking most likely could be averted.


Author(s):  
Miss. Akshata A. Gawande

End-user equipment fails or malfunctions because to power quality issues. Outages and service interruptions affect utility distribution networks, sensitive industrial loads, and important commercial operations, resulting in considerable financial losses for everybody involved. With the restructuring of power networks and the transition towards distributed and scattered generation, the issue of power quality will take on new dimensions. Take positive efforts in this area in developing countries like India, where the volatility in power frequency and many other variables of power quality are serious concerns. As a result of this study, measures that can improve the quality of power are advised. Three-stage control transmission framework with wide compensation range was proposed for Hybrid Static Synchronous Compensator (half and half D-STATCOM) by this technology. Due to these distinct properties, the cost of the framework can be drastically reduced. The circuit design of mixed D-STATCOM is provided first in this proposal. Its V–I trademark is then dissected, studied, and compared to D-STATCOM, which is more common. Finally, a parameter configuration for framework is provided, taking into account the range in which the compensating power is available and avoiding the potential reverberation issue. As a result of this, a control methodology is proposed for half-and-half D-STATCOM to allow operation under diverse voltage and current situations, such as unequal current flow, a voltage plunge, and a voltage shortfall As a final step, a reenactment and test results are provided to verify the planned half breed D-large STATCOM's pay range and high level of performance.


2021 ◽  
Vol 7 ◽  
pp. e634
Author(s):  
Moisés Silva-Muñoz ◽  
Alberto Franzin ◽  
Hugues Bersini

Database systems play a central role in modern data-centered applications. Their performance is thus a key factor in the efficiency of data processing pipelines. Modern database systems expose several parameters that users and database administrators can configure to tailor the database settings to the specific application considered. While this task has traditionally been performed manually, in the last years several methods have been proposed to automatically find the best parameter configuration for a database. Many of these methods, however, use statistical models that require high amounts of data and fail to represent all the factors that impact the performance of a database, or implement complex algorithmic solutions. In this work we study the potential of a simple model-free general-purpose configuration tool to automatically find the best parameter configuration of a database. We use the irace configurator to automatically find the best parameter configuration for the Cassandra NoSQL database using the YCBS benchmark under different scenarios. We establish a reliable experimental setup and obtain speedups of up to 30% over the default configuration in terms of throughput, and we provide an analysis of the configurations obtained.


Mathematics ◽  
2021 ◽  
Vol 9 (16) ◽  
pp. 1840
Author(s):  
Nicolás Caselli ◽  
Ricardo Soto ◽  
Broderick Crawford ◽  
Sergio Valdivia ◽  
Rodrigo Olivares

Metaheuristics are intelligent problem-solvers that have been very efficient in solving huge optimization problems for more than two decades. However, the main drawback of these solvers is the need for problem-dependent and complex parameter setting in order to reach good results. This paper presents a new cuckoo search algorithm able to self-adapt its configuration, particularly its population and the abandon probability. The self-tuning process is governed by using machine learning, where cluster analysis is employed to autonomously and properly compute the number of agents needed at each step of the solving process. The goal is to efficiently explore the space of possible solutions while alleviating human effort in parameter configuration. We illustrate interesting experimental results on the well-known set covering problem, where the proposed approach is able to compete against various state-of-the-art algorithms, achieving better results in one single run versus 20 different configurations. In addition, the result obtained is compared with similar hybrid bio-inspired algorithms illustrating interesting results for this proposal.


Author(s):  
Timothy Marchok

AbstractMultiple configurations of the Geophysical Fluid Dynamics Laboratory vortex tracker are tested to determine a setup that produces the best representation of a model forecast tropical cyclone center fix for the purpose of providing track guidance with the highest degree of accuracy and availability. Details of the tracking algorithms are provided, including descriptions of both the Barnes analysis used for center-fixing most variables and a separate scheme used for center-fixing wind circulation. The tracker is tested by running multiple configurations on all storms from the 2015-2017 hurricane seasons in the Atlantic and eastern Pacific Basins using forecasts from two operational National Weather Service models, the Global Forecast System (GFS) and the Hurricane Weather Research and Forecast (HWRF) model. A configuration that tracks only 850 mb geopotential height has the smallest forecast track errors of any configuration based on an individual parameter. However, a configuration composed of the mean of eleven parameters outperforms any of the configurations that are based on individual parameters. Configurations composed of subsets of the eleven parameters and including both mass and momentum variables provide results comparable to or better than the full 11-parameter configuration. In particular, a subset configuration with thickness variables excluded generally outperforms the 11-parameter mean, while one composed of variables from only the 850 mb and near-surface layers performs nearly as well as the 11-parameter mean. Tracker configurations composed of multiple variables are more reliable in providing guidance through the end of a forecast period than are tracker configurations based on individual parameters.


Sensors ◽  
2021 ◽  
Vol 21 (12) ◽  
pp. 4165
Author(s):  
Xingjian Zheng ◽  
Bo Wang ◽  
Yongqi Ge

According to the basic structure and working principle of the excitation signal sensors of a diesel engine electronic control unit (ECU), a segmentation model of an ECU excitation signal based on characteristic parameters (ESCP-SM) is proposed. In the ESCP-SM, the ECU excitation signal is divided into several parts, and each part has its characteristic parameters model. By using the same global parameters and strictly controlling each part’s proportional parameters, the ESCP-SM can achieve signal alignment and dynamic frequency modulation. Based on the simulation experiment, spectrum analysis proves that this modeling method ensures that the original signal’s effective information is not lost. Pearson similarity analysis shows that the similarity between the simulation signal and practical signal reaches 74%, exhibiting strong correlation. In addition, we set up a physical testing environment. ESCP-SM is realized based on virtual instrument technology, and provides excitation signals for a Komatsu 8 ECU. By modifying the parameter configuration, the ECU can drive the injector to work correctly.


Sign in / Sign up

Export Citation Format

Share Document