scholarly journals Dynamic Bus Travel Time Prediction Models on Road with Multiple Bus Routes

2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Cong Bai ◽  
Zhong-Ren Peng ◽  
Qing-Chang Lu ◽  
Jian Sun

Accurate and real-time travel time information for buses can help passengers better plan their trips and minimize waiting times. A dynamic travel time prediction model for buses addressing the cases on road with multiple bus routes is proposed in this paper, based on support vector machines (SVMs) and Kalman filtering-based algorithm. In the proposed model, the well-trained SVM model predicts the baseline bus travel times from the historical bus trip data; the Kalman filtering-based dynamic algorithm can adjust bus travel times with the latest bus operation information and the estimated baseline travel times. The performance of the proposed dynamic model is validated with the real-world data on road with multiple bus routes in Shenzhen, China. The results show that the proposed dynamic model is feasible and applicable for bus travel time prediction and has the best prediction performance among all the five models proposed in the study in terms of prediction accuracy on road with multiple bus routes.

Transport ◽  
2021 ◽  
Vol 36 (3) ◽  
pp. 221-234
Author(s):  
Anil Kumar Bachu ◽  
Kranthi Kumar Reddy ◽  
Lelitha Vanajakshi

Real-time bus travel time prediction has been an interesting problem since past decade, especially in India. Popular methods for travel time prediction include time series analysis, regression methods, Kalman filter method and Artificial Neural Network (ANN) method. Reported studies using these methods did not consider the high variance situations arising from the varying traffic and weather conditions, which is very common under heterogeneous and lane-less traffic conditions such as the one in India. The aim of the present study is to analyse the variance in bus travel time and predict the travel time accurately under such conditions. Literature shows that Support Vector Machines (SVM) technique is capable of performing well under such conditions and hence is used in this study. In the present study, nu-Support Vector Regression (SVR) using linear kernel function was selected. Two models were developed, namely spatial SVM and temporal SVM, to predict bus travel time. It was observed that in high mean and variance sections, temporal models are performing better than spatial. An algorithm to dynamically choose between the spatial and temporal SVM models, based on the current travel time, was also developed. The unique features of the present study are the traffic system under consideration having high variability and the variables used as input for prediction being obtained from Global Positioning System (GPS) units alone. The adopted scheme was implemented using data collected from GPS fitted public transport buses in Chennai (India). The performance of the proposed method was compared with available methods that were reported under similar traffic conditions and the results showed a clear improvement.


2015 ◽  
Vol 27 (4) ◽  
pp. 291-300 ◽  
Author(s):  
Shiquan Zhong ◽  
Juanjuan Hu ◽  
Shuiping Ke ◽  
Xuelian Wang ◽  
Jingxian Zhao ◽  
...  

Effective bus travel time prediction is essential in transit operation system. An improved support vector machine (SVM) is applied in this paper to predict bus travel time and then the efficiency of the improved SVM is checked. The improved SVM is the combination of traditional SVM, Grubbs’ test method and an adaptive algorithm for bus travel-time prediction. Since error data exists in the collected data, Grubbs’ test method is used for removing outliers from input data before applying the traditional SVM model. Besides, to decrease the influence of the historical data in different stages on the forecast result of the traditional SVM, an adaptive algorithm is adopted to dynamically decrease the forecast error. Finally, the proposed approach is tested with the data of No. 232 bus route in Shenyang. The results show that the improved SVM has good prediction accuracy and practicality.


2017 ◽  
Vol 11 (7) ◽  
pp. 362-372 ◽  
Author(s):  
B. Anil Kumar ◽  
R. Jairam ◽  
Shriniwas S. Arkatkar ◽  
Lelitha Vanajakshi

2019 ◽  
Vol 120 ◽  
pp. 426-435 ◽  
Author(s):  
Niklas Christoffer Petersen ◽  
Filipe Rodrigues ◽  
Francisco Camara Pereira

Author(s):  
Jaimyoung Kwon ◽  
Benjamin Coifman ◽  
Peter Bickel

An approach is presented for estimating future travel times on a freeway using flow and occupancy data from single-loop detectors and historical travel-time information. Linear regression, with the stepwise-variable-selection method and more advanced tree-based methods, is used. The analysis considers forecasts ranging from a few minutes into the future up to an hour ahead. Leave-a-day-out cross-validation was used to evaluate the prediction errors without underestimation. The current traffic state proved to be a good predictor for the near future, up to 20 min, whereas historical data are more informative for longer-range predictions. Tree-based methods and linear regression both performed satisfactorily, showing slightly different qualitative behaviors for each condition examined in this analysis. Unlike preceding works that rely on simulation, real traffic data were used. Although the current implementation uses measured travel times from probe vehicles, the ultimate goal is an autonomous system that relies strictly on detector data. In the course of presenting the prediction system, the manner in which travel times change from day to day was examined, and several metrics to quantify these changes were developed. The metrics can be used as input for travel-time prediction, but they also should be beneficial for other applications, such as calibrating traffic models and planning models.


Sign in / Sign up

Export Citation Format

Share Document