scholarly journals An Endosymbiotic Evolutionary Algorithm for the Hub Location-Routing Problem

2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
Ji Ung Sun

We consider a capacitated hub location-routing problem (HLRP) which combines the hub location problem and multihub vehicle routing decisions. The HLRP not only determines the locations of the capacitatedp-hubs within a set of potential hubs but also deals with the routes of the vehicles to meet the demands of customers. This problem is formulated as a 0-1 mixed integer programming model with the objective of the minimum total cost including routing cost, fixed hub cost, and fixed vehicle cost. As the HLRP has impractically demanding for the large sized problems, we develop a solution method based on the endosymbiotic evolutionary algorithm (EEA) which solves hub location and vehicle routing problem simultaneously. The performance of the proposed algorithm is examined through a comparative study. The experimental results show that the proposed EEA can be a viable solution method for the supply chain network planning.


2013 ◽  
Vol 409-410 ◽  
pp. 1188-1192 ◽  
Author(s):  
Ji Ung Sun

This paper considers the integrated hub location and multi-depot vehicle routing problem. In this type of problem, we have to determine the location of hubs within a set of candidate locations, allocation of customers to each selected hub location and routes of the vehicles to meet the demands of number of customers in order to minimize the total system cost. To solve these problems simultaneously we apply a hierarchical structure, which hub location as the main problem and vehicle routing as a subordinate one. An integrated solution method based on ant colony optimization algorithm is developed which solves hub location problem and vehicle routing problem hierarchically. Its performance is examined through a comparative study.



2017 ◽  
Vol 26 (45) ◽  
Author(s):  
Daniela Ospina-Toro ◽  
Eliana Mirledy Toro-Ocampo ◽  
Ramón Alfonso Gallego-Rendón

This paper proposes a methodology to identify feeder routes for areas disconnected to the Mass Transit System (MTS), in order to propose an alternative solution to the deficit in the number of passengers carried. The proposed methodology consists of two steps: (1) structuring scenarios for areas not connected to the transport system and (2) combining heuristic and exact techniques to solve the feeding routes problem considering in the restrictions the path length and passengers vehicle capacity.  To model the problem, a comparison with the Location Routing problem is established, which is usually applied to freight transport problems. The methodology proposed is a math-heuristic combining the Lin-Kernighan-Helsgaun algorithm (LKH) and the Clark and Wright’s Savings heuristic with the Branch-and-Cut exact algorithm, which is applied into a Mixed Integer Linear Programming model (MILP), also known as a Set Partitioning model (SP) for LRP. This methodological approach is validated with real instances considering locations in Pereira (Megabús), where some areas disconnected to the Central-Occidental Metropolitan Area System (AMCO) of Pereira, located in Colombia's Coffee Axis are considered.



Author(s):  
Hu Qin ◽  
Xinxin Su ◽  
Teng Ren ◽  
Zhixing Luo

AbstractOver the past decade, electric vehicles (EVs) have been considered in a growing number of models and methods for vehicle routing problems (VRPs). This study presents a comprehensive survey of EV routing problems and their many variants. We only consider the problems in which each vehicle may visit multiple vertices and be recharged during the trip. The related literature can be roughly divided into nine classes: Electric traveling salesman problem, green VRP, electric VRP, mixed electric VRP, electric location routing problem, hybrid electric VRP, electric dial-a-ride problem, electric two-echelon VRP, and electric pickup and delivery problem. For each of these nine classes, we focus on reviewing the settings of problem variants and the algorithms used to obtain their solutions.



2017 ◽  
Vol 2 (2) ◽  
pp. 114-125 ◽  
Author(s):  
Jianfeng Zheng ◽  
Cong Fu ◽  
Haibo Kuang

Purpose This paper aims to investigate the location of regional and international hub ports in liner shipping by proposing a hierarchical hub location problem. Design/methodology/approach This paper develops a mixed-integer linear programming model for the authors’ proposed problem. Numerical experiments based on a realistic Asia-Europe-Oceania liner shipping network are carried out to account for the effectiveness of this model. Findings The results show that one international hub port (i.e. Rotterdam) and one regional hub port (i.e. Zeebrugge) are opened in Europe. Two international hub ports (i.e. Sokhna and Salalah) are located in Western Asia, where no regional hub port is established. One international hub port (i.e. Colombo) and one regional hub port (i.e. Cochin) are opened in Southern Asia. One international hub port (i.e. Singapore) and one regional hub port (i.e. Jakarta) are opened in Southeastern Asia and Australia. Three international hub ports (i.e. Hong Kong, Shanghai and Yokohama) and two regional hub ports (i.e. Qingdao and Kwangyang) are opened in Eastern Asia. Originality/value This paper proposes a hierarchical hub location problem, in which the authors distinguish between regional and international hub ports in liner shipping. Moreover, scale economies in ship size are considered. Furthermore, the proposed problem introduces the main ports.



2014 ◽  
Vol 931-932 ◽  
pp. 578-582
Author(s):  
Sunarin Chanta ◽  
Ornurai Sangsawang

In this paper, we proposed an optimization model that addresses the evacuation routing problem for flood disaster when evacuees trying to move from affected areas to safe places using public transportation. A focus is on the situation of evacuating during high water level when special high vehicles are needed. The objective is to minimize the total traveled distance through evacuation periods where a limited number of vehicles is given. We formulated the problem as a mixed integer programming model based on the capacitated vehicle routing problem with multiple evcuation periods where demand changing by the time. The proposed model has been tested on a real-world case study affected by the severe flooding in Thailand, 2011.



2020 ◽  
Vol 21 (2) ◽  
pp. 225-234
Author(s):  
Ananda Noor Sholichah ◽  
Y Yuniaristanto ◽  
I Wayan Suletra

Location and routing are the main critical problems investigated in a logistic. Location-Routing Problem (LRP) involves determining the location of facilities and vehicle routes to supply customer's demands. Determination of depots as distribution centers is one of the problems in LRP.  In LRP, carbon emissions need to be considered because these problems cause global warming and climate change. In this paper, a new mathematical model for LRP considering CO2 emissions minimization is proposed. This study developed a new  Mixed Integer Linear Programming (MILP)  model for LRP with time windows and considered the environmental impacts.  Finally, a case study was conducted in the province of Central Java, Indonesia. In this case study, there are three depot candidates. The study results indicated that using this method in existing conditions and constraints provides a more optimal solution than the company's actual route. A sensitivity analysis was also carried out in this case study.



Sign in / Sign up

Export Citation Format

Share Document