scholarly journals Starter Labelling of k-Windmill Graphs with Small Defects

2015 ◽  
Vol 2015 ◽  
pp. 1-5
Author(s):  
Farej Omer ◽  
Nabil Shalaby

A graph on 2n vertices can be starter-labelled, if the vertices can be given labels from the nonzero elements of the additive group Z2n+1 such that each label i, either i or i-1, is assigned to exactly two vertices and the two vertices are separated by either i edges or i-1 edges, respectively. Mendelsohn and Shalaby have introduced Skolem-labelled graphs and determined the conditions of k-windmills to be Skolem-labelled. In this paper, we introduce starter-labelled graphs and obtain necessary and sufficient conditions for starter and minimum hooked starter labelling of all k-windmills.

2007 ◽  
Vol 82 (3) ◽  
pp. 297-314 ◽  
Author(s):  
Lynn M. Batten ◽  
Robert S. Coulter ◽  
Marie Henderson

AbstractFor any abelian group G and any function f: G → G we define a commutative binary operation or ‘multiplication’ on G in terms of f. We give necessary and sufficient conditions on f for G to extend to a commutative ring with the new multiplication. In the case where G is an elementary abelian p–group of odd order, we classify those functions which extend G to a ring and show, under an equivalence relation we call weak isomorphism, that there are precisely six distinct classes of rings constructed using this method with additive group the elementary abelian p–group of odd order p2.


1994 ◽  
Vol 37 (2) ◽  
pp. 227-237 ◽  
Author(s):  
D. L. Johnson ◽  
R. W. K. Odoni

Necessary and sufficient conditions are found on an ideal a⊲ℤ[x] for the additive group [a]+ of ℤ[x]/a to be finite and cyclic. As a consequence, the abelianizations of certain cyclically-presented groups are computed explicitly.


1986 ◽  
Vol 23 (04) ◽  
pp. 851-858 ◽  
Author(s):  
P. J. Brockwell

The Laplace transform of the extinction time is determined for a general birth and death process with arbitrary catastrophe rate and catastrophe size distribution. It is assumed only that the birth rates satisfyλ0= 0,λj> 0 for eachj> 0, and. Necessary and sufficient conditions for certain extinction of the population are derived. The results are applied to the linear birth and death process (λj=jλ, µj=jμ) with catastrophes of several different types.


2020 ◽  
Vol 17 (3) ◽  
pp. 313-324
Author(s):  
Sergii Chuiko ◽  
Ol'ga Nesmelova

The study of the differential-algebraic boundary value problems, traditional for the Kiev school of nonlinear oscillations, founded by academicians M.M. Krylov, M.M. Bogolyubov, Yu.A. Mitropolsky and A.M. Samoilenko. It was founded in the 19th century in the works of G. Kirchhoff and K. Weierstrass and developed in the 20th century by M.M. Luzin, F.R. Gantmacher, A.M. Tikhonov, A. Rutkas, Yu.D. Shlapac, S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko, O.A. Boichuk, V.P. Yacovets, C.W. Gear and others. In the works of S.L. Campbell, L.R. Petzold, Yu.E. Boyarintsev, V.F. Chistyakov, A.M. Samoilenko and V.P. Yakovets were obtained sufficient conditions for the reducibility of the linear differential-algebraic system to the central canonical form and the structure of the general solution of the degenerate linear system was obtained. Assuming that the conditions for the reducibility of the linear differential-algebraic system to the central canonical form were satisfied, O.A.~Boichuk obtained the necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and constructed a generalized Green operator of this problem. Based on this, later O.A. Boichuk and O.O. Pokutnyi obtained the necessary and sufficient conditions for the solvability of the weakly nonlinear differential algebraic boundary value problem, the linear part of which is a Noetherian differential algebraic boundary value problem. Thus, out of the scope of the research, the cases of dependence of the desired solution on an arbitrary continuous function were left, which are typical for the linear differential-algebraic system. Our article is devoted to the study of just such a case. The article uses the original necessary and sufficient conditions for the solvability of the linear Noetherian differential-algebraic boundary value problem and the construction of the generalized Green operator of this problem, constructed by S.M. Chuiko. Based on this, necessary and sufficient conditions for the solvability of the weakly nonlinear differential-algebraic boundary value problem were obtained. A typical feature of the obtained necessary and sufficient conditions for the solvability of the linear and weakly nonlinear differential-algebraic boundary-value problem is its dependence on the means of fixing of the arbitrary continuous function. An improved classification and a convergent iterative scheme for finding approximations to the solutions of weakly nonlinear differential algebraic boundary value problems was constructed in the article.


Filomat ◽  
2017 ◽  
Vol 31 (4) ◽  
pp. 925-940 ◽  
Author(s):  
Medine Yeşilkayagil ◽  
Feyzi Başar

Let 0 < s < ?. In this study, we introduce the double sequence space Rqt(Ls) as the domain of four dimensional Riesz mean Rqt in the space Ls of absolutely s-summable double sequences. Furthermore, we show that Rqt(Ls) is a Banach space and a barrelled space for 1 ? s < 1 and is not a barrelled space for 0 < s < 1. We determine the ?- and ?(?)-duals of the space Ls for 0 < s ? 1 and ?(bp)-dual of the space Rqt(Ls) for 1 < s < 1, where ? ? {p, bp, r}. Finally, we characterize the classes (Ls:Mu), (Ls:Cbp), (Rqt(Ls) : Mu) and (Rqt(Ls):Cbp) of four dimensional matrices in the cases both 0 < s < 1 and 1 ? s < 1 together with corollaries some of them give the necessary and sufficient conditions on a four dimensional matrix in order to transform a Riesz double sequence space into another Riesz double sequence space.


Filomat ◽  
2017 ◽  
Vol 31 (9) ◽  
pp. 2877-2889 ◽  
Author(s):  
Amir Sanatpour ◽  
Mostafa Hassanlou

We study boundedness of weighted differentiation composition operators Dk?,u between Zygmund type spaces Z? and Bloch type spaces ?. We also give essential norm estimates of such operators in different cases of k ? N and 0 < ?,? < ?. Applying our essential norm estimates, we get necessary and sufficient conditions for the compactness of these operators.


Sign in / Sign up

Export Citation Format

Share Document