scholarly journals Bayesian Estimation of Inequality and Poverty Indices in Case of Pareto Distribution Using Different Priors under LINEX Loss Function

2015 ◽  
Vol 2015 ◽  
pp. 1-10 ◽  
Author(s):  
Kamaljit Kaur ◽  
Sangeeta Arora ◽  
Kalpana K. Mahajan

Bayesian estimators of Gini index and a Poverty measure are obtained in case of Pareto distribution under censored and complete setup. The said estimators are obtained using two noninformative priors, namely, uniform prior and Jeffreys’ prior, and one conjugate prior under the assumption of Linear Exponential (LINEX) loss function. Using simulation techniques, the relative efficiency of proposed estimators using different priors and loss functions is obtained. The performances of the proposed estimators have been compared on the basis of their simulated risks obtained under LINEX loss function.




2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Afrah Al-Bossly

The main contribution of this work is the development of a compound LINEX loss function (CLLF) to estimate the shape parameter of the Lomax distribution (LD). The weights are merged into the CLLF to generate a new loss function called the weighted compound LINEX loss function (WCLLF). Then, the WCLLF is used to estimate the LD shape parameter through Bayesian and expected Bayesian (E-Bayesian) estimation. Subsequently, we discuss six different types of loss functions, including square error loss function (SELF), LINEX loss function (LLF), asymmetric loss function (ASLF), entropy loss function (ENLF), CLLF, and WCLLF. In addition, in order to check the performance of the proposed loss function, the Bayesian estimator of WCLLF and the E-Bayesian estimator of WCLLF are used, by performing Monte Carlo simulations. The Bayesian and expected Bayesian by using the proposed loss function is compared with other methods, including maximum likelihood estimation (MLE) and Bayesian and E-Bayesian estimators under different loss functions. The simulation results show that the Bayes estimator according to WCLLF and the E-Bayesian estimator according to WCLLF proposed in this work have the best performance in estimating the shape parameters based on the least mean averaged squared error.



Author(s):  
Aijaz Ahmad ◽  
Rajnee Tripathi

In this study, the shape parameter of the weighted Inverse Maxwell distribution is estimated by employing Bayesian techniques. To produce posterior distributions, the extended Jeffery's prior and the Erlang prior are utilised. The estimators are derived from the squared error loss function, the entropy loss function, the precautionary loss function, and the Linex loss function. Furthermore, an actual data set is studied to assess the effectiveness of various estimators under distinct loss functions.



2021 ◽  
Vol 1897 (1) ◽  
pp. 012008
Author(s):  
Nadia J. Fezaa Al-Obedy ◽  
Wafaa S. Hasanain


2017 ◽  
Vol 13 (3) ◽  
pp. 284-291 ◽  
Author(s):  
Ahmed Sadoun ◽  
Halim Zeghdoudi ◽  
Fatma Zohra Attoui ◽  
Mohamed Riad Remita


2014 ◽  
Vol 4 (1) ◽  
pp. 07-12
Author(s):  
Binod Kumar Singh




Sign in / Sign up

Export Citation Format

Share Document