linex loss
Recently Published Documents


TOTAL DOCUMENTS

136
(FIVE YEARS 27)

H-INDEX

13
(FIVE YEARS 1)

2022 ◽  
Vol 59 (2) ◽  
pp. 102809
Author(s):  
Saiji Fu ◽  
Xiaotong Yu ◽  
Yingjie Tian

Author(s):  
Aijaz Ahmad ◽  
Rajnee Tripathi

In this study, the shape parameter of the weighted Inverse Maxwell distribution is estimated by employing Bayesian techniques. To produce posterior distributions, the extended Jeffery's prior and the Erlang prior are utilised. The estimators are derived from the squared error loss function, the entropy loss function, the precautionary loss function, and the Linex loss function. Furthermore, an actual data set is studied to assess the effectiveness of various estimators under distinct loss functions.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Afrah Al-Bossly

The main contribution of this work is the development of a compound LINEX loss function (CLLF) to estimate the shape parameter of the Lomax distribution (LD). The weights are merged into the CLLF to generate a new loss function called the weighted compound LINEX loss function (WCLLF). Then, the WCLLF is used to estimate the LD shape parameter through Bayesian and expected Bayesian (E-Bayesian) estimation. Subsequently, we discuss six different types of loss functions, including square error loss function (SELF), LINEX loss function (LLF), asymmetric loss function (ASLF), entropy loss function (ENLF), CLLF, and WCLLF. In addition, in order to check the performance of the proposed loss function, the Bayesian estimator of WCLLF and the E-Bayesian estimator of WCLLF are used, by performing Monte Carlo simulations. The Bayesian and expected Bayesian by using the proposed loss function is compared with other methods, including maximum likelihood estimation (MLE) and Bayesian and E-Bayesian estimators under different loss functions. The simulation results show that the Bayes estimator according to WCLLF and the E-Bayesian estimator according to WCLLF proposed in this work have the best performance in estimating the shape parameters based on the least mean averaged squared error.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Farzana Noor ◽  
Saadia Masood ◽  
Yumna Sabar ◽  
Syed Bilal Hussain Shah ◽  
Touqeer Ahmad ◽  
...  

Cancer is among the major public health problems as well as a burden for Pakistan. About 148,000 new patients are diagnosed with cancer each year, and almost 100,000 patients die due to this fatal disease. Lung, breast, liver, cervical, blood/bone marrow, and oral cancers are the most common cancers in Pakistan. Perhaps smoking, physical inactivity, infections, exposure to toxins, and unhealthy diet are the main factors responsible for the spread of cancer. We preferred a novel four-component mixture model under Bayesian estimation to estimate the average number of incidences and death of both genders in different age groups. For this purpose, we considered 28 different kinds of cancers diagnosed in recent years. Data of registered patients all over Pakistan in the year 2012 were taken from GLOBOCAN. All the patients were divided into 4 age groups and also split based on genders to be applied to the proposed mixture model. Bayesian analysis is performed on the data using a four-component exponential mixture model. Estimators for mixture model parameters are derived under Bayesian procedures using three different priors and two loss functions. Simulation study and graphical representation for the estimates are also presented. It is noted from analysis of real data that the Bayes estimates under LINEX loss assuming Jeffreys’ prior is more efficient for the no. of incidences in male and female. As far as no. of deaths are concerned again, LINEX loss assuming Jeffreys’ prior gives better results for the male population, but for the female population, the best loss function is SELF assuming Jeffreys’ prior.


2021 ◽  
pp. 107285
Author(s):  
Jingjing Tang ◽  
Weiqi Xu ◽  
Jiahui Li ◽  
Yingjie Tian ◽  
Shan Xu

2021 ◽  
Vol 2021 ◽  
pp. 1-19
Author(s):  
Kaiwei Liu ◽  
Yuxuan Zhang

This article studies the E-Bayesian estimation of the unknown parameter of Lomax distribution based on generalized Type-I hybrid censoring. Under square error loss and LINEX loss functions, we get the E-Bayesian estimation and compare its effectiveness with Bayesian estimation. To measure the error of E-Bayesian estimation, the expectation of mean square error (E-MSE) is introduced. With Markov chain Monte Carlo technology, E-Bayesian estimations are computed. Metropolis–Hastings algorithm is applied within the process. Similarly, the credible interval for the parameter is calculated. Then, we can compare the MSE and E-MSE to evaluate whose result is more effective. For the purpose of illustration in real datasets, cases of generalized Type-I hybrid censored samples are presented. In order to judge whether the sample data can be directly fitted by the Lomax distribution, we adopt the Kolmogorov–Smirnov tests for evaluation. Finally, we can get the conclusion after comparing the results of E-Bayesian and Bayesian estimation.


2021 ◽  
Vol 2021 ◽  
pp. 1-18
Author(s):  
Farzana Noor ◽  
Saadia Masood ◽  
Mehwish Zaman ◽  
Maryam Siddiqa ◽  
Raja Asif Wagan ◽  
...  

Burning velocity of different chemicals is estimated using a model from mixed population considering inverted Kumaraswamy (IKum) distribution for component parts. Two estimation techniques maximum likelihood estimation (MLE) and Bayesian analysis are applied for estimation purposes. BEs of a mixture model are obtained using gamma, inverse beta prior, and uniform prior distribution with two loss functions. Hyperparameters are determined through the empirical Bayesian method. An extensive simulation study is also a part of the study which is used to foresee the characteristics of the presented model. Application of the IKum mixture model is presented through a real dataset. We observed from the results that Linex loss performed better than squared error loss as it resulted in lower risks. And similarly gamma prior is preferred over other priors.


2021 ◽  
Vol 1897 (1) ◽  
pp. 012008
Author(s):  
Nadia J. Fezaa Al-Obedy ◽  
Wafaa S. Hasanain

Sign in / Sign up

Export Citation Format

Share Document