scholarly journals Serum Endocan Levels Associated with Hypertension and Loss of Renal Function in Pediatric Patients after Two Years from Renal Transplant

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Livia Victorino de Souza ◽  
Vanessa Oliveira ◽  
Aline Oliveira Laurindo ◽  
DelmaRegına Gomes Huarachı ◽  
Paulo Cesar Koch Nogueira ◽  
...  

Endocan is an important biomarker of inflammation and endothelial dysfunction that increases in association with several chronic diseases. Few published data have described the role of endocan in pediatric renal transplant (RT) patients. We evaluated the endocan concentrations in 62 children who underwent renal transplantation and assessed their relationships with the patients’ blood pressure and loss of renal function. The endocan levels were significantly elevated in the pediatric RT patients who had hypertension and a loss of renal function. We determined positive correlations between the endocan concentrations and the hemodynamic variables (systolic blood pressure:r=0.416;P=0.001; pulse pressure:r=0.412;P=0.003). The endocan levels were inversely correlated with the estimated glomerular filtration rate (r=-0.388;P=0.003). An endocan cutoff concentration of 7.0 ng/mL identified pediatric RT patients who had hypertension and a loss of renal function with 100% sensitivity and 75% specificity. In conclusion, the endocan concentrations were significantly elevated in pediatric RT patients who had both hypertension and a loss of renal function. The correlations between the endocan levels and the hemodynamic variables and the markers of renal function strengthen the hypothesis that it is an important marker of cardiorenal risk.

2019 ◽  
Vol 20 (14) ◽  
pp. 3495 ◽  
Author(s):  
Yanling Yan ◽  
Jiayan Wang ◽  
Muhammad A. Chaudhry ◽  
Ying Nie ◽  
Shuyan Sun ◽  
...  

We have demonstrated that Na/K-ATPase acts as a receptor for reactive oxygen species (ROS), regulating renal Na+ handling and blood pressure. TALLYHO/JngJ (TH) mice are believed to mimic the state of obesity in humans with a polygenic background of type 2 diabetes. This present work is to investigate the role of Na/K-ATPase signaling in TH mice, focusing on susceptibility to hypertension due to chronic excess salt ingestion. Age-matched male TH and the control C57BL/6J (B6) mice were fed either normal diet or high salt diet (HS: 2, 4, and 8% NaCl) to construct the renal function curve. Na/K-ATPase signaling including c-Src and ERK1/2 phosphorylation, as well as protein carbonylation (a commonly used marker for enhanced ROS production), were assessed in the kidney cortex tissues by Western blot. Urinary and plasma Na+ levels were measured by flame photometry. When compared to B6 mice, TH mice developed salt-sensitive hypertension and responded to a high salt diet with a significant rise in systolic blood pressure indicative of a blunted pressure-natriuresis relationship. These findings were evidenced by a decrease in total and fractional Na+ excretion and a right-shifted renal function curve with a reduced slope. This salt-sensitive hypertension correlated with changes in the Na/K-ATPase signaling. Specifically, Na/K-ATPase signaling was not able to be stimulated by HS due to the activated baseline protein carbonylation, phosphorylation of c-Src and ERK1/2. These findings support the emerging view that Na/K-ATPase signaling contributes to metabolic disease and suggest that malfunction of the Na/K-ATPase signaling may promote the development of salt-sensitive hypertension in obesity. The increased basal level of renal Na/K-ATPase-dependent redox signaling may be responsible for the development of salt-sensitive hypertension in polygenic obese TH mice.


2007 ◽  
Vol 11 (8) ◽  
pp. 860-867 ◽  
Author(s):  
Douglas M. Silverstein ◽  
Pamela LeBlanc ◽  
James M. Hempe ◽  
Thiagarajan Ramcharan ◽  
J. Philip Boudreaux

2016 ◽  
Vol 21 (4) ◽  
pp. 344-352 ◽  
Author(s):  
Yusuke Sata ◽  
Markus P. Schlaich

Sympathetic activation is a hallmark of chronic and end-stage renal disease and adversely affects cardiovascular prognosis. Hypertension is present in the vast majority of these patients and plays a key role in the progressive deterioration of renal function and the high rate of cardiovascular events in this patient cohort. Augmentation of renin release, tubular sodium reabsorption, and renal vascular resistance are direct consequences of efferent renal sympathetic nerve stimulation and the major components of neural regulation of renal function. Renal afferent nerve activity directly influences sympathetic outflow to the kidneys and other highly innervated organs involved in blood pressure control via hypothalamic integration. Renal denervation of the kidney has been shown to reduce blood pressure in many experimental models of hypertension. Targeting the renal nerves directly may therefore be specifically useful in patients with chronic and end-stage renal disease. In this review, we will discuss the potential role of catheter-based renal denervation in patients with impaired kidney function and also reflect on the potential impact on other cardiovascular conditions commonly associated with chronic kidney disease such as heart failure and arrhythmias.


Hypertension ◽  
2012 ◽  
Vol 60 (suppl_1) ◽  
Author(s):  
Quaisar Ali ◽  
Yonnie Wu ◽  
Tadashi Inagami ◽  
Tahir Hussain

Angiotensin II acting via Angiotensin II type 2 receptors (AT2Rs) is believed to be protective against blood pressure increase and affects renal function under pathophysiological condition. Recently we have observed that stimulation of AT2Rs in male obese Zucker rats has shifted the two opposing arms of renin angiotensin system (RAS) i.e. ACE-Ang II-AT1 vs ACE2/Ang-(1-7)-Mas. Evidence suggests that estrogen regulates RAS, including AT2R in female mice. We hypothesized that AT2R has a gender specific regulation of RAS. In the present study, we investigated the role of AT2Rs in regulating RAS components in male and female mice. Kidney cortex from AT2R knockout (AT2RKO) male and female mice and wild type (WT) with similar background (C57BL/6) of 20 weeks of age were used in the study. The cortical ACE expression (ng ACE/μg tissue) was significantly increased in AT2RKO mice (3±0.02) compared to WT males (1.9±0.02). LC/MS analysis of cortical tissue revealed that Ang II was also significantly increased in AT2RKO mice (WT: 31±3, AT2RKO: 47±3 fmoles/mg tissue). Deletion of AT2R significantly increased AT1R (204%, 204 of 100) expression and had no effect on renin activity compared to WT males. The cortical expression of ACE2 activity (WT: 113±8, AT2RKO: 40±11, RFU/min), Ang-(1-7) levels (WT: 7.3±1.4, AT2RKO: 3±0.8 fmoles/mg tissue) and Mas receptor (AT2RKO: 54±15, % of WT) was significantly decreased in AT2RKO males compared to WT. The cortical expression of the AT2R and MasR was 2-fold greater in WT females compared to WT male. The renin activity (WT: 32±2, AT2RKO: 21±0.3, RFU/min) and MasR expression (WT: 187.5±55, AT2KO: 47±9) was significantly decreased in AT2RKO females compared to the female WT. Interestingly, Ang-(1-7) level (WT: 5.7±0.7, AT2RKO 2.6±0.7 fmoles/mg tissue) was decreased but no changes in ACE or ACE2 activity was observed in AT2KO females compared to their WT, suggesting a role of non-ACE2 pathway. This study suggests that AT2R regulates ACE/ACE2 ratio-Ang II-AT1R expression negatively only in males, whereas in females, it regulates Ang-(1-7) potentially via non-ACE2 pathway. Such changes indicate a gender specific mechanisms potentially associated with AT2R-mediated regulation of renal function and blood pressure control.


JCI Insight ◽  
2018 ◽  
Vol 3 (21) ◽  
Author(s):  
Ankita Bachhawat Jaykumar ◽  
Paulo S. Caceres ◽  
Keyona N. King-Medina ◽  
Tang-Dong Liao ◽  
Indrani Datta ◽  
...  

1995 ◽  
Vol 13 (2) ◽  
pp. 235???242 ◽  
Author(s):  
Philip Hasbak ◽  
Josrgen S. Petersen ◽  
Michael Shalmi ◽  
Henrik R. Lam ◽  
Niels J. Christensen ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document