scholarly journals Synthesis, In Vivo Anti-Inflammatory Activity, and Molecular Docking Studies of New Isatin Derivatives

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ravi Jarapula ◽  
Kiran Gangarapu ◽  
Sarangapani Manda ◽  
Sriram Rekulapally

A novel synthesis of 2-hydroxy-N′-(2-oxoindolin-3-ylidene) benzohydrazide derivatives was synthesized by the condensation of 2-hydroxybenzohydrazide with substituted isatins. The synthesized compounds were characterized by FT-IR, 1H-NMR, and mass spectral data. Further, the compounds were screened for in vivo anti-inflammatory activity by carrageenan induced paw edema method. The tested compounds have shown mild-to-moderate anti-inflammatory activity. The compounds VIIc and VIId exhibited 65% and 63% of paw edema reduction, respectively. The molecular docking studies were also carried out into the active site of COX-1 and COX-2 enzymes (PDB ID: 3N8Y, 3LN1, resp.) using VLife MDS 4.3. The compounds VIIc, VIId, and VIIf exhibited good docking scores of −57.27, −62.02, and −58.18 onto the active site of COX-2 and least dock scores of −8.03, −9.17, and −8.94 on COX-1 enzymes and were comparable with standard COX-2 inhibitor celecoxib. A significant correlation was observed between the in silico and the in vivo studies. The anti-inflammatory and docking results highlight the fact that the synthesized compounds VIIc, VIId, and VIIf could be considered as possible hit as therapeutic agents.

2020 ◽  
Vol 17 ◽  
Author(s):  
Ramamurthy Katikireddy ◽  
Ramu Kakkerla ◽  
M.P.S. Murali Krishna ◽  
Gandamalla Durgaiah ◽  
Narasimha Reddy Yellu

: 5-(7-Methyl-2-propyl-1H-benzo[d]imidazol-5-yl)-4-phenyl-4H-1,2,4-triazole-3-thiols(6a-i) have been synthesized from key intermediate 7-methyl-2-propyl-1H-benzo[d]imidazole-5-carbohydrazide(3). The hydrazide was treated with different aryl isothiocyanatesto give corresponding thiosemicarbazone derivatives, which underwent cyclization in 4N sodium hydroxide to affordcorresponding title compound. All the compounds evaluated for their in vitro antioxidant and in vivo anti-inflammatory activity. From the results, compounds 6b and 6e have shown potential antioxidant and anti-inflammatory activity. The biological data was further supported by molecular docking studies, which revealed the binding pattern and the affinity of the molecules in the active site of COX-2.


2020 ◽  
Vol 17 ◽  
Author(s):  
Deepak Kumar Singh ◽  
Mayank Kulshreshtha ◽  
Yogesh Kumar ◽  
Pooja A Chawla ◽  
Akash Ved ◽  
...  

Background: The pyrazolines give the reactions of aliphatic derivatives, resembling unsaturated compounds in their behavior towards permanganate and nascent hydrogen. This nucleus has been associated with various biological activities including inflammatory. Thiazolinone is a heterocyclic compound that contains both sulfur and nitrogen atom with a carbonyl group in their structure.Thiazolinone and their derivatives have attracted continuing interest because of their various biological activities, such as anti-inflammatory, antimicrobial, anti-proliferative, antiviral, anticonvulsant etc. The aim of the research was to club pyrazoline nucleus with thiazolinone in order to have significantanti-inflammatory activity. The synthesized compounds were chemically characterized for the establishment of their chemical structures and to evaluate as anti-inflammatory agent. Method: In the present work, eight derivatives of substituted pyrazoline (PT1-PT8) were synthesized by a three step reaction.The compounds were subjected to spectral analysis by Infrared, Mass and Nuclear magnetic resonance spectroscopy and elemental analysis data. All the synthesized were evaluated for their in vivo anti-inflammatory activity. The synthesized derivatives were evaluated for their affinity towards target COX-1 and COX-2, using indomethacin as the reference compound molecular docking visualization through AutoDock Vina. Results: Compounds PT-1, PT-3, PT-4 and PT-8 exhibited significant anti-inflammatory activity at 3rd hour being 50.7%, 54.3%, 52.3% and 57% respectively closer to that of the standard drug indomethacin (61.9%).From selected anti-inflammatory targets, the synthesized derivatives exhibited better interaction with COX-1 and COX-2 receptor, where indomethacin showed docking score of -6.5 kJ/mol, compound PT-1 exhibited highest docking score of -9.1 kJ/mol for COX-1 and compound PT-8 having docking score of 9.4 kJ/mol for COX-2. Conclusion: It was concluded that synthesized derivatives have more interaction with COX-2 receptors in comparison to the COX-1 receptors because the docking score with COX-2 receptors were very good. It is concluded that the synthesized derivatives (PT-1 to PT-8) are potent COX-2 inhibitors.


2007 ◽  
Vol 57 (1) ◽  
pp. 13-30 ◽  
Author(s):  
Mange Yadav ◽  
Shrikant Shirude ◽  
Devendra Puntambekar ◽  
Pinkal Patel ◽  
Hetal Prajapati ◽  
...  

Studies in 3,4-diaryl-1,2,5-oxadiazoles and theirN-oxides: Search for better COX-2 inhibitorsA series of 3,4-diaryl-1,2,5-oxadiazoles and 3,4-diaryl-1,2,5-oxadiazoleN-oxides were prepared and evaluated for COX-2 and COX-1 binding affinityin vitroand for anti-inflammatory activity by the rat paw edema method.p-Methoxy (p-OMe) substituted compounds 9, 21, 34, 41, 42 showed COX-2 enzyme inhibition higher than that showed by compounds with other substituents. 3,4-Di(4-methoxyphenyl)-1,2,5-oxadiazoleN-oxide (42) showed COX-2 enzyme inhibition of 54% at 22 μmol L-1and COX-1 enzyme inhibition of 44% at 88 μmol L-1concentrations, but showed very lowin vivoanti-inflammatory activity. Its deoxygenated derivative (21) showed lower COX-2 enzyme inhibition (26% at 22 μmol L-1) and higher COX-1 enzyme inhibition (53% at 88 μmol L-1) but, markedin vivoanti-inflammatory activity (71% at 25 mg kg-1)vs.celecoxib (48% at 12.5 mg kg-1). Molecular modeling (docking) studies showed that the methoxy group is positioned in the vicinity of COX-2 secondary pocket and it also participates in hydrogen bonding interactions in the COX-2 active site. These preliminary studies suggest thatp-methoxy (p-OMe) group in one of benzene rings may give potentially active leads in this series of oxadiazole/N-oxides.


2016 ◽  
Vol 121 ◽  
pp. 410-421 ◽  
Author(s):  
Alaa A.-M. Abdel-Aziz ◽  
Laila A. Abou-Zeid ◽  
Kamal Eldin H. ElTahir ◽  
Rezk R. Ayyad ◽  
Magda A.-A. El-Sayed ◽  
...  

Author(s):  
Sarath Sasi Kumar ◽  
Anjali T

Objective: In silico design and molecular docking of 1,2-benzisoxazole derivatives for their analgesic and anti-inflammatory activity using computational methods.Methods: In silico molecular properties of 1,2-benzisoxazole derivatives were predicted using various software’s such as Chemsketch, Molinspiration, PASS and Schrodinger to select compounds having optimum drug-likeness, molecular descriptors resembling those of standard drugs and not violating the ‘Lipinski rule of 5’. Molecular docking was performed on active site of nicotinic acetylcholine receptor (PDB: 2KSR) for analgesic activity and COX-2 (PDB: 6COX) for anti-inflammatory activity using Schrodinger under maestro molecular modelling environment.Results: From the results of molecular docking studies of 1,2-benzisoxazole derivatives, all the compounds showed good binding interactions with Nicotinic acetylcholine receptor and COX-2. Compounds 4a and 4c showed highest binding scores (-7.46 and-7.21 respectively) with nicotinic acetylcholine receptor and exhibited maximum analgesic activity. Compound 4a showed highest binding score (-7.8) with COX-2 and exhibited maximum anti-inflammatory activity.Conclusion: All the derivatives of 1,2-benzisoxazole showed good analgesic and anti-inflammatory activity as predicted using molecular docking on respective receptors.


Sign in / Sign up

Export Citation Format

Share Document