scholarly journals Studies in 3,4-diaryl-1,2,5-oxadiazoles and their N-oxides: Search for better COX-2 inhibitors

2007 ◽  
Vol 57 (1) ◽  
pp. 13-30 ◽  
Author(s):  
Mange Yadav ◽  
Shrikant Shirude ◽  
Devendra Puntambekar ◽  
Pinkal Patel ◽  
Hetal Prajapati ◽  
...  

Studies in 3,4-diaryl-1,2,5-oxadiazoles and theirN-oxides: Search for better COX-2 inhibitorsA series of 3,4-diaryl-1,2,5-oxadiazoles and 3,4-diaryl-1,2,5-oxadiazoleN-oxides were prepared and evaluated for COX-2 and COX-1 binding affinityin vitroand for anti-inflammatory activity by the rat paw edema method.p-Methoxy (p-OMe) substituted compounds 9, 21, 34, 41, 42 showed COX-2 enzyme inhibition higher than that showed by compounds with other substituents. 3,4-Di(4-methoxyphenyl)-1,2,5-oxadiazoleN-oxide (42) showed COX-2 enzyme inhibition of 54% at 22 μmol L-1and COX-1 enzyme inhibition of 44% at 88 μmol L-1concentrations, but showed very lowin vivoanti-inflammatory activity. Its deoxygenated derivative (21) showed lower COX-2 enzyme inhibition (26% at 22 μmol L-1) and higher COX-1 enzyme inhibition (53% at 88 μmol L-1) but, markedin vivoanti-inflammatory activity (71% at 25 mg kg-1)vs.celecoxib (48% at 12.5 mg kg-1). Molecular modeling (docking) studies showed that the methoxy group is positioned in the vicinity of COX-2 secondary pocket and it also participates in hydrogen bonding interactions in the COX-2 active site. These preliminary studies suggest thatp-methoxy (p-OMe) group in one of benzene rings may give potentially active leads in this series of oxadiazole/N-oxides.

Author(s):  
Naglaa Mohamed Ahmed ◽  
Shahira Nofal ◽  
Samir Mohamed Awad

Aim: As part of ongoing studies in developing new anti-inflammatory agents, 2-thioxo-1,2,3,4-tetrahydropyrimidine derivative 1 was synthesized by direct Biginelli condensation and used for the synthesis of novel series of  pyrimidin-2-thione derivatives  (2a-d to 7a-b). Materials and Methods: All compounds were examined for their anti-inflammatory activity using the carrageenan-induced rat paw edema assay in comparison to ibuprofen, as a reference drug. Molecular docking studies were carried out using SYBLYL-X v.2.1 software. Study Design: A series of pyrimidine derivatives were synthesized by a simple and available method leads to a molecule of promising anti-inflammatory activity, the docking studies show good agreement with anti-inflammatory results. Future researches are recommended to assure the importance of these new derivatives for various applications. Place and Duration of Study: Pharmaceutical Organic Chemistry Department and Pharmacology and Toxicology Department, Faculty of Pharmacy, Helwan University, Cairo, Egypt, between February 2018 and March 2019. Results: Compounds showed 61 to 86% anti-inflammatory activity where-as ibuprofen showed 69% activity. Compounds 2a, 2b, 2c, 2d, 3a, 3b, 3c, 3d, 7a, 7b induced strong anti-inflammatory activity, comparable with that of ibuprofen, they showed significantly difference at 4h post-carrageenan. Compound 3c (86%) showed the best result of edema inhibition in rats. Moreover, compounds 1, 2c and 3c were subjected to in vitro enzyme assay investigations against COX-1 and COX-2. All tested compounds showed higher potency towards COX-2 over COX-1. Compound 3c realized higher potency towards COX-2 (IC50= 0.046 μM) than compounds 1(IC50= 0.21 μM) and 2c (IC50=0.11 μM) as well as ibuprofen (IC50= 43.628 μM). Structure-activity relationship (SAR) has been discussed. Conclusion: A series of pyrimidine derivatives were synthesized by a simple and available method gave a molecule of promising anti-inflammatory activity, the docking studies showed good agreement with anti-inflammatory results.


2020 ◽  
Vol 17 ◽  
Author(s):  
Ramamurthy Katikireddy ◽  
Ramu Kakkerla ◽  
M.P.S. Murali Krishna ◽  
Gandamalla Durgaiah ◽  
Narasimha Reddy Yellu

: 5-(7-Methyl-2-propyl-1H-benzo[d]imidazol-5-yl)-4-phenyl-4H-1,2,4-triazole-3-thiols(6a-i) have been synthesized from key intermediate 7-methyl-2-propyl-1H-benzo[d]imidazole-5-carbohydrazide(3). The hydrazide was treated with different aryl isothiocyanatesto give corresponding thiosemicarbazone derivatives, which underwent cyclization in 4N sodium hydroxide to affordcorresponding title compound. All the compounds evaluated for their in vitro antioxidant and in vivo anti-inflammatory activity. From the results, compounds 6b and 6e have shown potential antioxidant and anti-inflammatory activity. The biological data was further supported by molecular docking studies, which revealed the binding pattern and the affinity of the molecules in the active site of COX-2.


2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Ravi Jarapula ◽  
Kiran Gangarapu ◽  
Sarangapani Manda ◽  
Sriram Rekulapally

A novel synthesis of 2-hydroxy-N′-(2-oxoindolin-3-ylidene) benzohydrazide derivatives was synthesized by the condensation of 2-hydroxybenzohydrazide with substituted isatins. The synthesized compounds were characterized by FT-IR, 1H-NMR, and mass spectral data. Further, the compounds were screened for in vivo anti-inflammatory activity by carrageenan induced paw edema method. The tested compounds have shown mild-to-moderate anti-inflammatory activity. The compounds VIIc and VIId exhibited 65% and 63% of paw edema reduction, respectively. The molecular docking studies were also carried out into the active site of COX-1 and COX-2 enzymes (PDB ID: 3N8Y, 3LN1, resp.) using VLife MDS 4.3. The compounds VIIc, VIId, and VIIf exhibited good docking scores of −57.27, −62.02, and −58.18 onto the active site of COX-2 and least dock scores of −8.03, −9.17, and −8.94 on COX-1 enzymes and were comparable with standard COX-2 inhibitor celecoxib. A significant correlation was observed between the in silico and the in vivo studies. The anti-inflammatory and docking results highlight the fact that the synthesized compounds VIIc, VIId, and VIIf could be considered as possible hit as therapeutic agents.


Plants ◽  
2021 ◽  
Vol 10 (6) ◽  
pp. 1109
Author(s):  
Sakshi Bajaj ◽  
Shivkanya Fuloria ◽  
Vetriselvan Subramaniyan ◽  
Dhanalekshmi Unnikrishnan Meenakshi ◽  
Sharad Wakode ◽  
...  

Swertia alata C.B Clarke (Gentianaceae) is a well-reported plant in the traditional system of medicine. The present study was intended to isolate the phytoconstituents from the ethanolic extract of the aerial parts of S. alata; and evaluate for in vitro COX-1/COX-2 inhibition activity, in vivo anti-inflammatory and ulcerogenic activity. Phytoisolation involved partitioning of S. alata ethanolic extract into petroleum ether and chloroform soluble fractions using silica gel-based column chromatography. The isolation afforded two phytoisolates, namely oleanolic acid (SA-1) and 3-hydroxylup-12-(13)-ene-17-carboxylic acid (SA-4). Phytoisolates structures were established by melting point, ultraviolet (UV), attenuated total reflection-Fourier-transform infrared (ATR-FTIR), nuclear magnetic resonance (1H-NMR, 13C-NMR and HMBC) and mass spectrometry. Phytoisolates were further evaluated for in vitro cyclooxygenase (COX-1/COX-2) inhibitory activity, in vivo anti-inflammatory and ulcerogenic activity. The study revealed SA-4 (COX-1/COX-2 inhibition activity of 104/61.68 µM with % inhibition of 61.36) to be more effective than SA-1 (COX-1/COX-2 inhibition activity of 128.4/87.25 µM, with % inhibition of 47.72). SA-1 and SA-4, when subjected to ulcerogenic study, exhibited significant gastric tolerance. The current study reports chromatographic isolation and spectrometric characterization of SA-1 and SA-4. The present study concludes that compound SA-4 possess significant anti-inflammatory activity and less irritant property over gastric mucosa with no significant ulcerogenicity in comparison to indomethacin.


2020 ◽  
Vol 17 ◽  
Author(s):  
Deepak Kumar Singh ◽  
Mayank Kulshreshtha ◽  
Yogesh Kumar ◽  
Pooja A Chawla ◽  
Akash Ved ◽  
...  

Background: The pyrazolines give the reactions of aliphatic derivatives, resembling unsaturated compounds in their behavior towards permanganate and nascent hydrogen. This nucleus has been associated with various biological activities including inflammatory. Thiazolinone is a heterocyclic compound that contains both sulfur and nitrogen atom with a carbonyl group in their structure.Thiazolinone and their derivatives have attracted continuing interest because of their various biological activities, such as anti-inflammatory, antimicrobial, anti-proliferative, antiviral, anticonvulsant etc. The aim of the research was to club pyrazoline nucleus with thiazolinone in order to have significantanti-inflammatory activity. The synthesized compounds were chemically characterized for the establishment of their chemical structures and to evaluate as anti-inflammatory agent. Method: In the present work, eight derivatives of substituted pyrazoline (PT1-PT8) were synthesized by a three step reaction.The compounds were subjected to spectral analysis by Infrared, Mass and Nuclear magnetic resonance spectroscopy and elemental analysis data. All the synthesized were evaluated for their in vivo anti-inflammatory activity. The synthesized derivatives were evaluated for their affinity towards target COX-1 and COX-2, using indomethacin as the reference compound molecular docking visualization through AutoDock Vina. Results: Compounds PT-1, PT-3, PT-4 and PT-8 exhibited significant anti-inflammatory activity at 3rd hour being 50.7%, 54.3%, 52.3% and 57% respectively closer to that of the standard drug indomethacin (61.9%).From selected anti-inflammatory targets, the synthesized derivatives exhibited better interaction with COX-1 and COX-2 receptor, where indomethacin showed docking score of -6.5 kJ/mol, compound PT-1 exhibited highest docking score of -9.1 kJ/mol for COX-1 and compound PT-8 having docking score of 9.4 kJ/mol for COX-2. Conclusion: It was concluded that synthesized derivatives have more interaction with COX-2 receptors in comparison to the COX-1 receptors because the docking score with COX-2 receptors were very good. It is concluded that the synthesized derivatives (PT-1 to PT-8) are potent COX-2 inhibitors.


2020 ◽  
pp. 104555
Author(s):  
Abdallah M. Alfayomy ◽  
Salah A. Abdel-Aziz ◽  
Adel A. Marzouk ◽  
Montaser Sh. A. Shaykoon ◽  
Atsushi Narumi ◽  
...  

2020 ◽  
Vol 21 (24) ◽  
pp. 9623
Author(s):  
Łukasz Szczukowski ◽  
Edward Krzyżak ◽  
Adrianna Zborowska ◽  
Patrycja Zając ◽  
Katarzyna Potyrak ◽  
...  

The long-term use of Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) in treatment of different chronic inflammatory disorders is strongly restricted by their serious gastrointestinal adverse effects. Therefore, there is still an urgent need to search for new, safe, and efficient anti-inflammatory agents. Previously, we have reported the Mannich base-type derivatives of pyrrolo[3,4-d]pyridazinone which strongly inhibit cyclooxygenase, have better affinity to COX-2 isoenzyme and exert promising anti-oxidant activity. These findings encouraged us to perform further optimization of that structure. Herein, we present the design, synthesis, molecular docking, spectroscopic, and biological studies of novel pyrrolo[3,4-d]pyridazinone derivatives bearing 4-aryl-1-(1-oxoethyl)piperazine pharmacophore 5a,b–6a,b. The new compounds were obtained via convenient, efficient, one-pot synthesis. According to in vitro evaluations, novel molecules exert no cytotoxicity and act as selective COX-2 inhibitors. These findings stay in good correlation with molecular modeling results, which additionally showed that investigated compounds take a position in the active site of COX-2 very similar to Meloxicam. Moreover, all derivatives reduce the increased level of reactive oxygen and nitrogen species and prevent DNA strand breaks caused by oxidative stress. Finally, performed spectroscopic and molecular docking studies demonstrated that new compound interactions with bovine serum albumin (BSA) are moderate, formation of complexes is in one-to-one ratio, and binding site II (subdomain IIIA) is favorable.


2020 ◽  
Author(s):  
Khaled R. A. Abdellatif ◽  
Eman K. A. Abdelall ◽  
Heba A. H. Elshemy ◽  
El‐Shaymaa El‐Nahass ◽  
Maha M. Abdel‐Fattah ◽  
...  

2020 ◽  
Vol 12 (15) ◽  
pp. 1369-1386
Author(s):  
Siva S Panda ◽  
Adel S Girgis ◽  
Hitesh H Honkanadavar ◽  
Riham F George ◽  
Aladdin M Srour

Background: A new set of hybrid conjugates derived from 2-(4-isobutylphenyl)propanoic acid (ibuprofen) is synthesized to overcome the drawbacks of the current non-steroidal anti-inflammatory drugs. Results & methodology: Synthesized conjugates were screened for their anti-inflammatory, analgesic and ulcerogenic properties. Few conjugates were found to have significant anti-inflammatory properties in the carrageenan-induced rat paw edema test, while a fair number of conjugates showed promising peripheral analgesic activity in the acetic acid-induced writhing test as well as central analgesic properties in the in vivo hot plate technique. The newly synthesized conjugates did not display any ulcerogenic liability. Conclusion: In vitro, COX-1 and COX-2 enzyme inhibition studies raveled compound 7e is more selective toward COX-2 compared with ibuprofen.


Sign in / Sign up

Export Citation Format

Share Document