scholarly journals Markovian Queueing System with Discouraged Arrivals and Self-Regulatory Servers

2016 ◽  
Vol 2016 ◽  
pp. 1-11 ◽  
Author(s):  
K. V. Abdul Rasheed ◽  
M. Manoharan

We consider discouraged arrival of Markovian queueing systems whose service speed is regulated according to the number of customers in the system. We will reduce the congestion in two ways. First we attempt to reduce the congestion by discouraging the arrivals of customers from joining the queue. Secondly we reduce the congestion by introducing the concept of service switches. First we consider a model in which multiple servers have three service ratesμ1,μ2, andμ(μ1≤μ2<μ), say, slow, medium, and fast rates, respectively. If the number of customers in the system exceeds a particular pointK1orK2, the server switches to the medium or fast rate, respectively. For this adaptive queueing system the steady state probabilities are derived and some performance measures such as expected number in the system/queue and expected waiting time in the system/queue are obtained. Multiple server discouraged arrival model having one service switch and single server discouraged arrival model having one and two service switches are obtained as special cases. A Matlab program of the model is presented and numerical illustrations are given.

1990 ◽  
Vol 22 (03) ◽  
pp. 764-767 ◽  
Author(s):  
Ludolf E. Meester ◽  
J. George Shanthikumar

We consider a tandem queueing system with m stages and finite intermediate buffer storage spaces. Each stage has a single server and the service times are independent and exponentially distributed. There is an unlimited supply of customers in front of the first stage. For this system we show that the number of customers departing from each of the m stages during the time interval [0, t] for any t ≧ 0 is strongly stochastically increasing and concave in the buffer storage capacities. Consequently the throughput of this tandem queueing system is an increasing and concave function of the buffer storage capacities. We establish this result using a sample path recursion for the departure processes from the m stages of the tandem queueing system, that may be of independent interest. The concavity of the throughput is used along with the reversibility property of tandem queues to obtain the optimal buffer space allocation that maximizes the throughput for a three-stage tandem queue.


1985 ◽  
Vol 22 (4) ◽  
pp. 903-911 ◽  
Author(s):  
V. Giorno ◽  
C. Negri ◽  
A. G. Nobile

Single–server–single-queue–FIFO-discipline queueing systems are considered in which at most a finite number of customers N can be present in the system. Service and arrival rates are taken to be dependent upon that state of the system. Interarrival intervals, service intervals, waiting times and busy periods are studied, and the results obtained are used to investigate the features of a special queueing model characterized by parameters (λ (Ν –n), μn). This model retains the qualitative features of the C-model proposed by Conolly [2] and Chan and Conolly [1]. However, quite unlike the latter, it also leads to closed-form expressions for the transient probabilities, the interarrival and service probability density functions and their moments, as well as the effective interarrival and service densities and their moments. Finally, some computational results are given to compare the model discussed in this paper with the C-model.


2010 ◽  
Vol 47 (2) ◽  
pp. 459-473 ◽  
Author(s):  
Brian H. Fralix ◽  
Germán Riaño

We take a new look at transient, or time-dependent Little laws for queueing systems. Through the use of Palm measures, we show that previous laws (see Bertsimas and Mourtzinou (1997)) can be generalized. Furthermore, within this framework, a new law can be derived as well, which gives higher-moment expressions for very general types of queueing system; in particular, the laws hold for systems that allow customers to overtake one another. What is especially novel about our approach is the use of Palm measures that are induced by nonstationary point processes, as these measures are not commonly found in the queueing literature. This new higher-moment law is then used to provide expressions for all moments of the number of customers in the system in an M/G/1 preemptive last-come-first-served queue at a time t > 0, for any initial condition and any of the more famous preemptive disciplines (i.e. preemptive-resume, and preemptive-repeat with and without resampling) that are analogous to the special cases found in Abate and Whitt (1987c), (1988). These expressions are then used to derive a nice structural form for all of the time-dependent moments of a regulated Brownian motion (see Abate and Whitt (1987a), (1987b)).


1983 ◽  
Vol 20 (04) ◽  
pp. 920-923 ◽  
Author(s):  
Hau Leung Lee ◽  
Morris A. Cohen

Convexity of performance measures of queueing systems is important in solving control problems of multi-facility systems. This note proves that performance measures such as the expected waiting time, expected number in queue, and the Erlang delay formula are convex with respect to the arrival rate or the traffic intensity of the M/M/c queueing system.


1990 ◽  
Vol 22 (3) ◽  
pp. 764-767 ◽  
Author(s):  
Ludolf E. Meester ◽  
J. George Shanthikumar

We consider a tandem queueing system with m stages and finite intermediate buffer storage spaces. Each stage has a single server and the service times are independent and exponentially distributed. There is an unlimited supply of customers in front of the first stage. For this system we show that the number of customers departing from each of the m stages during the time interval [0, t] for any t ≧ 0 is strongly stochastically increasing and concave in the buffer storage capacities. Consequently the throughput of this tandem queueing system is an increasing and concave function of the buffer storage capacities. We establish this result using a sample path recursion for the departure processes from the m stages of the tandem queueing system, that may be of independent interest. The concavity of the throughput is used along with the reversibility property of tandem queues to obtain the optimal buffer space allocation that maximizes the throughput for a three-stage tandem queue.


2010 ◽  
Vol 47 (02) ◽  
pp. 459-473 ◽  
Author(s):  
Brian H. Fralix ◽  
Germán Riaño

We take a new look at transient, or time-dependent Little laws for queueing systems. Through the use of Palm measures, we show that previous laws (see Bertsimas and Mourtzinou (1997)) can be generalized. Furthermore, within this framework, a new law can be derived as well, which gives higher-moment expressions for very general types of queueing system; in particular, the laws hold for systems that allow customers to overtake one another. What is especially novel about our approach is the use of Palm measures that are induced by nonstationary point processes, as these measures are not commonly found in the queueing literature. This new higher-moment law is then used to provide expressions for all moments of the number of customers in the system in an M/G/1 preemptive last-come-first-served queue at a time t &gt; 0, for any initial condition and any of the more famous preemptive disciplines (i.e. preemptive-resume, and preemptive-repeat with and without resampling) that are analogous to the special cases found in Abate and Whitt (1987c), (1988). These expressions are then used to derive a nice structural form for all of the time-dependent moments of a regulated Brownian motion (see Abate and Whitt (1987a), (1987b)).


2020 ◽  
Vol 66 (8) ◽  
pp. 3501-3527 ◽  
Author(s):  
Hung T. Do ◽  
Masha Shunko

Flow-control policies that balance server loads are well known for improving performance of queueing systems with multiple nodes. However, although load balancing benefits the system overall, it may negatively impact some of the queueing nodes. For example, it may reduce throughput rates or engender unfairness with respect to some performance measures. For queueing systems with multiple single-server nodes, we propose a set of constrained load-balancing policies that ensures the expected arrival rate to each queueing node is not reduced, and we show that such policies provide multiple benefits for each queueing node: stochastically fewer customers and lower variance of the number of customers at each queueing node. These results imply performance improvement as measured by multiple general objective functions, including but not limited to the expected number of customers at a queueing node, probability of having a high number of customers, variance of the number of customers, and expected number of customers conditional on exceeding a threshold defined by a fixed service level. We demonstrate numerically that our proposed policies capture a large portion of the potential maximal improvement. This paper was accepted by Noah Gans, stochastic models and simulation.


1985 ◽  
Vol 22 (04) ◽  
pp. 903-911 ◽  
Author(s):  
V. Giorno ◽  
C. Negri ◽  
A. G. Nobile

Single–server–single-queue–FIFO-discipline queueing systems are considered in which at most a finite number of customers N can be present in the system. Service and arrival rates are taken to be dependent upon that state of the system. Interarrival intervals, service intervals, waiting times and busy periods are studied, and the results obtained are used to investigate the features of a special queueing model characterized by parameters (λ (Ν –n), μn). This model retains the qualitative features of the C-model proposed by Conolly [2] and Chan and Conolly [1]. However, quite unlike the latter, it also leads to closed-form expressions for the transient probabilities, the interarrival and service probability density functions and their moments, as well as the effective interarrival and service densities and their moments. Finally, some computational results are given to compare the model discussed in this paper with the C-model.


1983 ◽  
Vol 20 (4) ◽  
pp. 920-923 ◽  
Author(s):  
Hau Leung Lee ◽  
Morris A. Cohen

Convexity of performance measures of queueing systems is important in solving control problems of multi-facility systems. This note proves that performance measures such as the expected waiting time, expected number in queue, and the Erlang delay formula are convex with respect to the arrival rate or the traffic intensity of the M/M/c queueing system.


2017 ◽  
Vol 2017 ◽  
pp. 1-10 ◽  
Author(s):  
Ekaterina Evdokimova ◽  
Sabine Wittevrongel ◽  
Dieter Fiems

This paper investigates the performance of a queueing model with multiple finite queues and a single server. Departures from the queues are synchronised or coupled which means that a service completion leads to a departure in every queue and that service is temporarily interrupted whenever any of the queues is empty. We focus on the numerical analysis of this queueing model in a Markovian setting: the arrivals in the different queues constitute Poisson processes and the service times are exponentially distributed. Taking into account the state space explosion problem associated with multidimensional Markov processes, we calculate the terms in the series expansion in the service rate of the stationary distribution of the Markov chain as well as various performance measures when the system is (i) overloaded and (ii) under intermediate load. Our numerical results reveal that, by calculating the series expansions of performance measures around a few service rates, we get accurate estimates of various performance measures once the load is above 40% to 50%.


Sign in / Sign up

Export Citation Format

Share Document