steady state probabilities
Recently Published Documents


TOTAL DOCUMENTS

138
(FIVE YEARS 17)

H-INDEX

17
(FIVE YEARS 1)

Mathematics ◽  
2021 ◽  
Vol 9 (22) ◽  
pp. 2884
Author(s):  
Hector Gibson Kinmanhon Houankpo ◽  
Dmitry Kozyrev

In the actual study, we carried out a reliability analysis of a repairable redundant data transmission system with the use of the elaborated mathematical and simulation model of a closed heterogeneous cold standby system. The system consists of one repair unit and two different data sources with an exponential cumulative distribution function (CDF) of their uptime and a general independent CDF of their repair time. We consider five special cases of the general independent CDF; including Gamma, Weibull-Gnedenko, Exponential, Lognormal and Pareto. We study the system-level reliability, defined as the steady-state probability (SSP) of failure-free system operation. The proposed analytical methodology made it possible to assess the reliability of the whole system in the event of failure of its components. Specific analytic expressions and asymptotic valuations are obtained for the steady-state probabilities of the system and the SSP of failure-free system operation. A simulation model of the system in cases where it is not workable to obtain expressions for the steady-state probabilities of the system in an explicit analytical form was considered, in particular for constructing the empirical system reliability function. The issue of sensitivity analysis of reliability characteristics of the considered system to the types of repair time distributions was also studied. The simulation modeling was done with the R statistics package.


Mathematics ◽  
2021 ◽  
Vol 9 (21) ◽  
pp. 2753
Author(s):  
Gabi Hanukov ◽  
Michael Hassoun ◽  
Oren Musicant

We study a phenomenon causing server time loss in ticket queues with balking and calling time. A customer who balks from the queue after printing a ticket leaves a virtual entity in the queue that requires server time to be cleared. The longer the queue, the larger the proportion of customers abandoning their place, and the larger the server time loss due to calling customers that left the queue. The solution is suggested by giving the customer the best possible estimate of her expected waiting time before printing a ticket, thus ensuring that, if she balks, no number in the queue is created that will waste server time. Although partially observable ticket queues have been studied in the literature, the addition of a calling time for absent customers creates a new type of problem that has been observed in real life but has not been formally addressed yet. We analyze this stochastic system, formulate its steady state probabilities, and calculate the system’s performance measures. The analytical solution provided here is robust and can be applied to a wide range of customers’ behavior functions. Finally, numerical analysis is performed that demonstrates the benefits of providing timely information to customers for different levels of traffic congestion.


2021 ◽  
Vol 12 (7) ◽  
pp. 1774-1784
Author(s):  
Girin Saikia ◽  
Amit Choudhury

The phenomena are balking can be said to have been observed when a customer who has arrived into queuing system decides not to join it. Reverse balking is a particular type of balking wherein the probability that a customer will balk goes down as the system size goes up and vice versa. Such behavior can be observed in investment firms (insurance company, Mutual Fund Company, banks etc.). As the number of customers in the firm goes up, it creates trust among potential investors. Fewer customers would like to balk as the number of customers goes up. In this paper, we develop an M/M/1/k queuing system with reverse balking. The steady-state probabilities of the model are obtained and closed forms of expression of a number of performance measures are derived.


Mathematics ◽  
2021 ◽  
Vol 9 (19) ◽  
pp. 2415
Author(s):  
Agassi Melikov ◽  
Sevinj Aliyeva ◽  
Janos Sztrik

In this paper, models of unreliable multi-server retrial queues with delayed feedback are examined. The Bernoulli retrial is allowed upon the arrival of both primary (from outside) and feedback customers (from orbit), as well as the Bernoulli feedback that may occur after each service in this system. Servers can break down both during the service of customers and when they are idle. If a server breaks down during the service of a customer, then the interrupted customer, in accordance with the Bernoulli scheme, decides either to leave the system or join a common orbit of retrial and feedback customers. An approximate method, based on the space merging approach of three-dimensional Markov chains, is proposed for the calculation of the steady-state probabilities, as well as performance measures of the system. The results of the numerical experiments are demonstrated.


Electronics ◽  
2020 ◽  
Vol 9 (12) ◽  
pp. 2120
Author(s):  
Iskanter-Alexandros Chousainov ◽  
Ioannis Moscholios ◽  
Panagiotis Sarigiannidis

A multi-cluster cloud radio access network (C-RAN) is considered in this paper where the remote radio heads (RRHs) form different clusters. A cluster includes RRHs that have the same radio resource unit capacity. In addition, all RRHs are separated from the common pool of computational resource units named baseband units. Each RRH accommodates calls whose arrival process can be random, quasi-random, or even bursty. The latter is modeled according to the compound Poisson process where calls arrive in the C-RAN in the form of batches whose size (in calls) is generally distributed. An arriving call requires a radio and a computational resource unit so as to be accepted in the C-RAN. If at least one of these units is not available, the call is blocked. To analyze the proposed multi-cluster C-RAN we model it as a loss system, show that the steady-state probabilities have a product form solution and propose an algorithm for the computation of congestion probabilities. The accuracy of the proposed algorithm is verified via simulation.


Mathematics ◽  
2020 ◽  
Vol 8 (12) ◽  
pp. 2186
Author(s):  
Agassi Melikov ◽  
Sevinj Aliyeva ◽  
János Sztrik

A system with heterogeneous servers, Markov Modulated Poisson flow and instantaneous feedback is studied. The primary call is serviced on a high-speed server, and after it is serviced, each call, according to the Bernoulli scheme, either leaves the system or requires re-servicing. After the completion of servicing of a call in a slow server, according to the Bernoulli scheme, it also either leaves the system or requires re-servicing. If upon arrival of a primary call the queue length of such calls exceeds a certain threshold value and the slow server is free, then the incoming primary call, according to the Bernoulli scheme, is either sent to the slow server or joins its own queue. A mathematical model of the studied system is constructed in the form of a three-dimensional Markov chain. Approximate algorithms for calculating the steady-state probabilities of the models with finite and infinite queues are proposed and their high accuracy is shown. The results of numerical experiments are presented.


2020 ◽  
Vol DMTCS Proceedings, 28th... ◽  
Author(s):  
Olya Mandelshtam ◽  
Xavier Viennot

International audience In this paper, we introduce therhombic alternative tableaux, whose weight generating functions providecombinatorial formulae to compute the steady state probabilities of the two-species ASEP. In the ASEP, there aretwo species of particles, oneheavyand onelight, on a one-dimensional finite lattice with open boundaries, and theparametersα,β, andqdescribe the hopping probabilities. The rhombic alternative tableaux are enumerated by theLah numbers, which also enumerate certainassembl ́ees of permutations. We describe a bijection between the rhombicalternative tableaux and these assembl ́ees. We also provide an insertion algorithm that gives a weight generatingfunction for the assemb ́ees. Combined, these results give a bijective proof for the weight generating function for therhombic alternative tableaux.


Mathematics ◽  
2020 ◽  
Vol 8 (3) ◽  
pp. 459
Author(s):  
Boyan Dimitrov ◽  
Vladimir Rykov ◽  
Tatiana Milovanova

In this paper a two component redundant renewable system operating under the Marshall–Olkin failure model is considered. The purpose of the study is to find analytical expressions for the time dependent and the steady state characteristics of the system. The system cycle process characteristics are analyzed by the use of probability interpretation of the Laplace–Stieltjes transformations (LSTs), and of probability generating functions (PGFs). In this way the long mathematical analytic derivations are avoid. As results of the investigations, the main reliability characteristics of the system—the reliability function and the steady state probabilities—have been found in analytical form. Our approach can be used in the studies of various applications of systems with dependent failures between their elements.


Mathematics ◽  
2019 ◽  
Vol 7 (11) ◽  
pp. 1128 ◽  
Author(s):  
Agassi Melikov ◽  
Sevinj Aliyeva ◽  
Janos Sztrik

The model of multi-channel queuing system with Markov modulated Poisson process (MMPP) flow and delayed feedback is considered. After the customer is served completely, they will decide either to join the retrial group again for another service (feedback) with some state-dependent probability or to leave the system forever with complimentary probability. Feedback calls organize an orbit of repeated calls (r-calls). If upon arrival of an r-call all the channels of the system are busy, then it either leaves the system with some state-dependent probability or with a complementary probability returns to orbit. Methods to calculate the steady-state probabilities of the appropriate three-dimensional Markov chain as well as performance measures of investigated system are developed. Results of numerical experiments are demonstrated.


Sign in / Sign up

Export Citation Format

Share Document