scholarly journals Viscosity Solution of Mean-Variance Portfolio Selection of a Jump Markov Process with No-Shorting Constraints

2016 ◽  
Vol 2016 ◽  
pp. 1-14 ◽  
Author(s):  
Moussa Kounta

We consider the so-called mean-variance portfolio selection problem in continuous time under the constraint that the short-selling of stocks is prohibited where all the market coefficients are random processes. In this situation the Hamilton-Jacobi-Bellman (HJB) equation of the value function of the auxiliary problem becomes a coupled system of backward stochastic partial differential equation. In fact, the value functionVoften does not have the smoothness properties needed to interpret it as a solution to the dynamic programming partial differential equation in the usual (classical) sense; however, in such casesVcan be interpreted as a viscosity solution. Here we show the unicity of the viscosity solution and we see that the optimal and the value functions are piecewise linear functions based on some Riccati differential equations. In particular we solve the open problem posed by Li and Zhou and Zhou and Yin.

2000 ◽  
Vol 42 (3-4) ◽  
pp. 417-422 ◽  
Author(s):  
T.Y. Pai ◽  
C.F. Ouyang ◽  
Y.C. Liao ◽  
H.G. Leu

Oxygen diffused to water in gravity sewer pipes was studied in a 21 m long, 0.15 m diameter model sewer. At first, the sodium sulfide was added into the clean water to deoxygenate, then the pump was started to recirculate the water and the deoxygenated water was reaerated. The dissolved oxygen microelectrode was installed to measure the dissolved oxygen concentrations varied with flow velocity, time and depth. The dissolved oxygen concentration profiles were constructed and observed. The partial differential equation diffusion model that considered Fick's law including the molecular diffusion term and eddy diffusion term were derived. The analytic solution of the partial differential equation was used to determine the diffusivities by the method of nonlinear regression. The diffusivity values for the oxygen transfer was found to be a function of molecular diffusion, eddy diffusion and flow velocity.


Sign in / Sign up

Export Citation Format

Share Document