scholarly journals A Hierarchical Load Balancing Strategy Considering Communication Delay Overhead for Large Distributed Computing Systems

2016 ◽  
Vol 2016 ◽  
pp. 1-9 ◽  
Author(s):  
Jixiang Yang ◽  
Ling Ling ◽  
Haibin Liu

Load balancing technology can effectively exploit potential enormous compute power available on distributed systems and achieve scalability. Communication delay overhead on distributed system, which is time-varying and is usually ignored or assumed to be deterministic for traditional load balancing strategies, can greatly degrade the load balancing performance. Considering communication delay overhead and its time-varying feature, a hierarchical load balancing strategy based on generalized neural network (HLBSGNN) is presented for large distributed systems. The novelty of the HLBSGNN is threefold: (1) the hierarchy with optimized communication is employed to reduce load balancing overhead for large distributed computing systems, (2) node computation rate and communication delay randomness imposed by the communication medium are considered, and (3) communication and migration overheads are optimized via forecasting delay. Comparisons with traditional strategies, such as centralized, distributed, and random delay strategies, indicate that the HLBSGNN is more effective and efficient.

Author(s):  
Ghada Farouk Elkabbany ◽  
Mohamed Rasslan

Distributed computing systems allow homogenous/heterogeneous computers and workstations to act as a computing environment. In this environment, users can uniformly access local and remote resources in order to run processes. Users are not aware of which computers their processes are running on. This might pose some complicated security problems. This chapter provides a security review of distributed systems. It begins with a survey about different and diverse definitions of distributed computing systems in the literature. Different systems are discussed with emphasize on the most recent. Finally, different aspects of distributed systems security and prominent research directions are explored.


Author(s):  
Mustafizur Rahman ◽  
Rajiv Ranjan ◽  
Rajkumar Buyya

In recent years, decentralization in distributed computing systems, such as Grids and Clouds has been widely explored in order to improve system performance in terms of scalability and reliability. However, the decentralized nature of the system also raises some serious challenges. This chapter discusses the major challenges of designing and implementing decentralization in Grid and Cloud systems. It also presents a survey of some existing decentralized distributed systems and technologies regarding how these systems have addressed the challenges.


Sign in / Sign up

Export Citation Format

Share Document