scholarly journals A Long-Term Prediction Model of Beijing Haze Episodes Using Time Series Analysis

2016 ◽  
Vol 2016 ◽  
pp. 1-7 ◽  
Author(s):  
Xiaoping Yang ◽  
Zhongxia Zhang ◽  
Zhongqiu Zhang ◽  
Liren Sun ◽  
Cui Xu ◽  
...  

The rapid industrial development has led to the intermittent outbreak of pm2.5 or haze in developing countries, which has brought about great environmental issues, especially in big cities such as Beijing and New Delhi. We investigated the factors and mechanisms of haze change and present a long-term prediction model of Beijing haze episodes using time series analysis. We construct a dynamic structural measurement model of daily haze increment and reduce the model to a vector autoregressive model. Typical case studies on 886 continuous days indicate that our model performs very well on next day’s Air Quality Index (AQI) prediction, and in severely polluted cases (AQI ≥ 300) the accuracy rate of AQI prediction even reaches up to 87.8%. The experiment of one-week prediction shows that our model has excellent sensitivity when a sudden haze burst or dissipation happens, which results in good long-term stability on the accuracy of the next 3–7 days’ AQI prediction.

Electronics ◽  
2021 ◽  
Vol 10 (10) ◽  
pp. 1151
Author(s):  
Carolina Gijón ◽  
Matías Toril ◽  
Salvador Luna-Ramírez ◽  
María Luisa Marí-Altozano ◽  
José María Ruiz-Avilés

Network dimensioning is a critical task in current mobile networks, as any failure in this process leads to degraded user experience or unnecessary upgrades of network resources. For this purpose, radio planning tools often predict monthly busy-hour data traffic to detect capacity bottlenecks in advance. Supervised Learning (SL) arises as a promising solution to improve predictions obtained with legacy approaches. Previous works have shown that deep learning outperforms classical time series analysis when predicting data traffic in cellular networks in the short term (seconds/minutes) and medium term (hours/days) from long historical data series. However, long-term forecasting (several months horizon) performed in radio planning tools relies on short and noisy time series, thus requiring a separate analysis. In this work, we present the first study comparing SL and time series analysis approaches to predict monthly busy-hour data traffic on a cell basis in a live LTE network. To this end, an extensive dataset is collected, comprising data traffic per cell for a whole country during 30 months. The considered methods include Random Forest, different Neural Networks, Support Vector Regression, Seasonal Auto Regressive Integrated Moving Average and Additive Holt–Winters. Results show that SL models outperform time series approaches, while reducing data storage capacity requirements. More importantly, unlike in short-term and medium-term traffic forecasting, non-deep SL approaches are competitive with deep learning while being more computationally efficient.


2014 ◽  
Vol 14 (6) ◽  
pp. 1886-1897 ◽  
Author(s):  
Chenglong Dai ◽  
Dechang Pi ◽  
Zhen Fang ◽  
Hui Peng

2021 ◽  
Vol 25 ◽  
pp. e57
Author(s):  
Yoshinori Moriyama ◽  
Shintaro Oyama ◽  
Hana Kumamoto-Goto ◽  
Sho Tano ◽  
Yoshihiko Tashima ◽  
...  

2014 ◽  
Vol 52 (5) ◽  
pp. 2960-2976 ◽  
Author(s):  
Wonkook Kim ◽  
Tao He ◽  
Dongdong Wang ◽  
Changyong Cao ◽  
Shunlin Liang

Sign in / Sign up

Export Citation Format

Share Document