scholarly journals Dendritic Spines in Depression: What We Learned from Animal Models

2016 ◽  
Vol 2016 ◽  
pp. 1-26 ◽  
Author(s):  
Hui Qiao ◽  
Ming-Xing Li ◽  
Chang Xu ◽  
Hui-Bin Chen ◽  
Shu-Cheng An ◽  
...  

Depression, a severe psychiatric disorder, has been studied for decades, but the underlying mechanisms still remain largely unknown. Depression is closely associated with alterations in dendritic spine morphology and spine density. Therefore, understanding dendritic spines is vital for uncovering the mechanisms underlying depression. Several chronic stress models, including chronic restraint stress (CRS), chronic unpredictable mild stress (CUMS), and chronic social defeat stress (CSDS), have been used to recapitulate depression-like behaviors in rodents and study the underlying mechanisms. In comparison with CRS, CUMS overcomes the stress habituation and has been widely used to model depression-like behaviors. CSDS is one of the most frequently used models for depression, but it is limited to the study of male mice. Generally, chronic stress causes dendritic atrophy and spine loss in the neurons of the hippocampus and prefrontal cortex. Meanwhile, neurons of the amygdala and nucleus accumbens exhibit an increase in spine density. These alterations induced by chronic stress are often accompanied by depression-like behaviors. However, the underlying mechanisms are poorly understood. This review summarizes our current understanding of the chronic stress-induced remodeling of dendritic spines in the hippocampus, prefrontal cortex, orbitofrontal cortex, amygdala, and nucleus accumbens and also discusses the putative underlying mechanisms.

2021 ◽  
Author(s):  
Sierra A. Codeluppi ◽  
Dipashree Chatterjee ◽  
Thomas D. Prevot ◽  
Keith A. Misquitta ◽  
Etienne Sibille ◽  
...  

AbstractBackgroundNeuromorphological changes are consistently reported in the prefrontal cortex (PFC) of patients with stress-related disorders and in rodent stress models, but the effects of stress on astrocyte morphology and potential link to behavioral deficits are relatively unknown.MethodsTo answer these questions, transgenic mice expressing green fluorescent protein (GFP) under the glial fibrillary acid protein (GFAP) promotor were subjected to 7, 21 or 35 days of chronic restraint stress (CRS). CRS behavioral effects on anhedonia- and anxiety-like behaviours were measured using the sucrose intake and the PhenoTyper tests, respectively. PFC GFP+ or GFAP+ cells morphology was assessed using Sholl analysis and associations with behavior were determined using correlation analysis.ResultsCRS-exposed mice displayed anxiety-like behavior at 7, 21 and 35 days and anhedonia-like behavior at 35 days. Analysis of GFAP+ cell morphology revealed significant atrophy of distal processes following 21 and 35 days of CRS. CRS induced similar decreases in intersections at distal radii for GFP+ cells, accompanied by increased proximal processes. Additionally, the number of intersections at the most distal radius step significantly correlated with time spent in the shelter zone in the PhenoTyper test (r=-0.581, p<0.01) for GFP+ cells and with behavioural emotionality calculated by z-scoring all behavioral measured deficits, for both GFAP+ and GFP+ cells (r=-0.400, p<0.05; r=-0.399, p<0.05).ConclusionChronic stress exposure induces a progressive atrophy of cortical astroglial cells, potentially contributing to maladaptive neuroplastic changes associated with stress-related disorders.


Synapse ◽  
2009 ◽  
Vol 63 (12) ◽  
pp. 1143-1153 ◽  
Author(s):  
Oscar Solis ◽  
Rubén Antonio Vázquez-Roque ◽  
Israel Camacho-Abrego ◽  
Citlalli Gamboa ◽  
Fidel De La Cruz ◽  
...  

2020 ◽  
Vol 23 (12) ◽  
pp. 821-836
Author(s):  
Ting-Ting Gao ◽  
Yuan Wang ◽  
Ling Liu ◽  
Jin-Liang Wang ◽  
Ying-Jie Wang ◽  
...  

Abstract Background Depression is one of the most common forms of mental illness and also a leading cause of disability worldwide. Developing novel antidepressant targets beyond the monoaminergic systems is now popular and necessary. LIM kinases, including LIM domain kinase 1 and 2 (LIMK1/2), play a key role in actin and microtubule dynamics through phosphorylating cofilin. Since depression is associated with atrophy of neurons and reduced connectivity, here we speculate that LIMK1/2 may play a role in the pathogenesis of depression. Methods In this study, the chronic unpredictable mild stress (CUMS), chronic restraint stress (CRS), and chronic social defeat stress (CSDS) models of depression, various behavioral tests, stereotactic injection, western blotting, and immunofluorescence methods were adopted. Results CUMS, CRS, and CSDS all significantly enhanced the phosphorylation levels of LIMK1 and LIMK2 in the medial prefrontal cortex (mPFC) but not the hippocampus of mice. Administration of fluoxetine, the most commonly used selective serotonin reuptake inhibitor in clinical practice, fully reversed the effects of CUMS, CRS, and CSDS on LIMK1 and LIMK2 in the mPFC. Moreover, pharmacological inhibition of LIMK1 and LIMK2 in the mPFC by LIMKi 3 infusions notably prevented the pro-depressant effects of CUMS, CRS, and CSDS in mice. Conclusions In summary, these results suggest that LIMK1/2 in the mPFC has a role in chronic stress-induced depressive-like effects in mice and could be a novel pharmacological target for developing antidepressants.


Synapse ◽  
2007 ◽  
Vol 61 (12) ◽  
pp. 978-984 ◽  
Author(s):  
Cecilia Flores ◽  
Xianglan Wen ◽  
Cassandre Labelle-Dumais ◽  
Bryan Kolb

2017 ◽  
Vol 2017 ◽  
pp. 1-13 ◽  
Author(s):  
Yu Shu ◽  
Tonghui Xu

Chronic stress is associated with occurrence of many mental disorders. Previous studies have shown that dendrites and spines of pyramidal neurons of the prefrontal cortex undergo drastic reorganization following chronic stress experience. So the prefrontal cortex is believed to play a key role in response of neural system to chronic stress. However, how stress induces dynamic structural changes in neural circuit of prefrontal cortex remains unknown. In the present study, we examined the effects of chronic social defeat stress on dendritic spine structural plasticity in the mouse frontal association (FrA) cortexin vivousing two-photon microscopy. We found that chronic stress altered spine dynamics in FrA and increased the connectivity in FrA neural circuits. We also found that the changes in spine dynamics in FrA are correlated with the deficit of sucrose preference in defeated mice. Our findings suggest that chronic stress experience leads to adaptive change in neural circuits that may be important for encoding stress experience related memory and anhedonia.


2020 ◽  
Author(s):  
Tingting An ◽  
Zhenhua Song ◽  
Jin-Hui Wang

Abstract Background Major depressive disorder (MDD) is a disease that seriously endangers human health and mental state. Chronic stress and lack of reward may reduce the function of the brain's reward circuits, leading to major depressive disorder. The effect of reward treatment on chronic stress-induced depression-like behaviors and its molecular mechanism in the brain remain unclear.Methods Mice were divided into the groups of control, chronic unpredictable mild stress (CUMS), and CUMS-companion. Mice of CUMS group was performed by CUMS for 4 weeks, and CUMS-companion group was treated by CUMS accompanied with companion. The tests of sucrose preference, Y-maze, and forced swimming were conducted to assess depression-like behaviors or resilience. High-throughput sequencing was used to analyze mRNA and miRNA profiles in the medial prefrontal cortex harvested from control, CUMS-MDD (mice with depression-like behaviors in CUMS group), Reward-MDD (mice with depression-like behaviors in CUMS-companion group), CUMS-resilience (resilient mice in CUMS group), Reward-resilience (resilient mice in CUMS-companion group) mice.Results The results provided evidence that accompanying with companion ameliorated CUMS-induced depression-like behaviors in mice. 45 differentially expressed genes (DEGs) are associated with depression-like behaviors, 8 DEGs are associated with resilience and 59 DEGs are associated with nature reward (companion) were identified. Furthermore, 196 differentially expressed miRNAs were found to be associated with companion. Based on the differentially expressed miRNAs and DEGs data, miRNA-mRNA network was established to be associated with companion.Conclusion Taken together, our data here provided a method to ameliorate depression-like behaviors, and numerous potential drug targets for the prevention or treatment of depression.


2019 ◽  
Vol 22 (10) ◽  
pp. 675-679 ◽  
Author(s):  
Jiancheng Zhang ◽  
Youge Qu ◽  
Lijia Chang ◽  
Yaoyu Pu ◽  
Kenji Hashimoto

Abstract Background A recent study demonstrated that spine formation rates by ketamine in the prefrontal cortex (PFC) were not altered at 3–6 h following a single injection, but were markedly altered at 12–24 h. Here, we investigated the acute (3 h post-treatment) effects of (R)-ketamine in the decreased spine density in the medial PFC (mPFC) and hippocampus in susceptible mice after chronic social defeat stress (CSDS). Methods (R)-ketamine (10 mg/kg) or saline was administered intraperitoneally to CSDS-susceptible mice. Dendritic spine density in the mPFC and hippocampus was measured 3 h after a single injection. Results (R)-ketamine significantly ameliorated the decreased spine density in the prelimbic area of mPFC, Cornu Ammonis3, and dentate gyrus of the hippocampus of CSDS-susceptible mice Conclusions This study suggests that (R)-ketamine rapidly ameliorates the decreased spine density in the mPFC and hippocampus of CSDS-susceptible mice, resulting in its rapid-acting antidepressant effects.


Sign in / Sign up

Export Citation Format

Share Document