restraint stress
Recently Published Documents


TOTAL DOCUMENTS

1939
(FIVE YEARS 349)

H-INDEX

80
(FIVE YEARS 7)

2022 ◽  
Vol 419 ◽  
pp. 113705
Author(s):  
Ericks Sousa Soares ◽  
Felipe Vanz ◽  
Vagner Fagnani Linartevichi ◽  
Helena Cimarosti ◽  
Thereza Christina Monteiro de Lima

2022 ◽  
Author(s):  
Oana A Zeleznik ◽  
Tinayi Hunag ◽  
Chirag J Patel ◽  
Elizabeth M Poole ◽  
Clary B Clish ◽  
...  

Background: Chronic stress may affect metabolism of amino acids, lipids, and other small molecule metabolites, but these alterations may differ depending on tissue evaluated. We examined metabolomic changes in plasma and ovarian tissue samples from female mice due to chronic stress exposure. Methods: At 12 weeks old, healthy, female, C57 black mice were randomly assigned to three weeks of chronic stress using daily restraint (2 hours/day; n=9) or normal care (n=10). Metabolomic profiling was conducted on plasma and ovarian tissues. Using the Wilcoxon Rank Test, Metabolite Set Enrichment Analysis, and Differential Network Analysis we identified metabolomic alterations occurring in response to restraint stress. All p-values were corrected for multiple testing using the false discovery rate approach. Results: In plasma, individual lysophosphatidylcholines (positively) and the metabolite classes carnitines (positively), diacylglycerols and triacylglycerols (inversely) were associated with restraint stress (adjusted-p's<0.2). In contrast, diacylglycerols and triacylglycerols were increased while carnitines were decreased in ovarian tissue from stressed mice (adjusted-p's<0.2). However, several metabolites (cholesteryl esters, phosphatidylcholines/ phosphatidylethanolamines plasmalogens and multiple amino acids) were consistently inversely associated with restraint stress in plasma and ovarian tissue (adjusted-p's<0.2). Conclusion: We identified differences in multiple lipid and amino acid metabolites in plasma and ovarian tissue of female mice after exposure to chronic stress. Some affected metabolites (primarily triacylglycerols and diacylglycerols) exhibited opposite associations with chronic stress in plasma (a marker of systemic influences) versus in ovarian tissue (representing local changes), suggesting research to understand the biological impact of chronic stress needs to consider both systemic and tissue-specific alterations.


Antioxidants ◽  
2021 ◽  
Vol 11 (1) ◽  
pp. 85
Author(s):  
Jereme G. Spiers ◽  
Li Si Tan ◽  
Stephen T. Anderson ◽  
Andrew F. Hill ◽  
Nickolas A. Lavidis ◽  
...  

Essential metals such as copper, iron, and zinc are cofactors in various biological processes including oxygen utilisation, cell growth, and biomolecular synthesis. The homeostasis of these essential metals is carefully controlled through a system of protein transporters involved in the uptake, storage, and secretion. Some metal ions can be transformed by processes including reduction/oxidation (redox) reactions, and correspondingly, the breakdown of metal ion homeostasis can lead to formation of reactive oxygen and nitrogen species. We have previously demonstrated rapid biochemical responses to stress involving alterations in the redox state to generate free radicals and the resultant oxidative stress. However, the effects of stress on redox-active metals including iron and copper and redox-inert zinc have not been well characterised. Therefore, this study aims to examine the changes in these essential metals following exposure to short-term repeated stress, and to further elucidate the alterations in metal homeostasis through expression analysis of different metal transporters. Outbred male Wistar rats were exposed to unrestrained (control), 1 day, or 3 days of 6 h restraint stress (n = 8 per group). After the respective stress treatment, blood and liver samples were collected for the analysis of biometal concentrations and relative gene expression of metal transporter and binding proteins. Exposure to repeated restraint stress was highly effective in causing hepatic redox imbalance. Stress was also shown to induce hepatic metal redistribution, while modulating the mRNA levels of key metal transporters. Overall, this study is the first to characterise the gene expression profile of metal homeostasis following stress and provide insight into the changes occurring prior to the onset of chronic stress conditions.


Molecules ◽  
2021 ◽  
Vol 27 (1) ◽  
pp. 22
Author(s):  
Paulina Misztak ◽  
Magdalena Sowa-Kućma ◽  
Patrycja Pańczyszyn-Trzewik ◽  
Bernadeta Szewczyk ◽  
Gabriel Nowak

Chronic stress is the key factor contributing to the development of depressive symptoms. Chronic restraint stress (CRS) is well validated and is one of the most commonly used models to induce depressive-like behavior in rodents. The present study aimed to evaluate whether fluoxetine (FLU 5 mg/kg) and zinc (Zn 10mg/kg) given simultaneously induce a more pronounced antidepressant-like effect in the CRS model than both those compounds given alone. Behavioral assessment was performed using the tail suspension and splash tests (TST and ST, respectively). Furthermore, the effects of CRS, FLU and Zn given alone and combined treatment with FLU + Zn on the expression of proteins involved in the apoptotic, inflammatory, and epigenetic processes were evaluated in selected brain structures (prefrontal cortex, PFC; and hippocampus, Hp) using Western blot analysis or enzyme-linked immunosorbent assays (ELISA). The results obtained indicated that three hours (per day) of immobilization for 4 weeks induced prominent depressive symptoms that manifested as increased immobility time in the TST, as well as decreased number and grooming time in the ST. Behavioral changes induced by CRS were reversed by both FLU (5 and 10 mg/kg) or Zn (10 mg/kg). Zinc supplementation (10 mg/kg) slightly increases the effectiveness of FLU (5 mg/kg) in the TST. However, it significantly increased the activity of FLU in the ST compared to the effect induced by FLU and Zn alone. Biochemical studies revealed that neither CRS nor FLU and Zn given alone or in combined treatment alter the expression of proteins involved in apoptotic or inflammatory processes. CRS induced major alterations in histone deacetylase (HDAC) levels by increasing the level of HADC1 and decreasing the level of HADC4 in the PFC and Hp, decreasing the level of HADC6 in the PFC but increasing it in Hp. Interestingly, FLU + Zn treatment reversed CRS-induced changes in HDAC levels in the Hp, indicating that HDAC modulation is linked to FLU + Zn treatment and this effect is structure-specific.


2021 ◽  
Vol 12 ◽  
Author(s):  
Yu-Fei Luo ◽  
Xiao-Xia Ye ◽  
Ying-Zhao Fang ◽  
Meng-Die Li ◽  
Zhi-Xuan Xia ◽  
...  

Background: The mechanistic target of rapamycin complex 1 (mTORC1) signaling has served as a promising target for therapeutic intervention of major depressive disorder (MDD), but the mTORC1 signaling underlying MDD has not been well elucidated. In the present study, we investigated whether mTORC1 signaling pathway mediates synapse loss induced by chronic stress in the hippocampus.Methods: Chronic restraint stress-induced depression-like behaviors were tested by behavior tests (sucrose preference test, forced swim test and tail suspension test). Synaptic proteins and alternations of phosphorylation levels of mTORC1 signaling-associated molecules were measured using Western blotting. In addition, mRNA changes of immediate early genes (IEGs) and glutamate receptors were measured by RT-PCR. Rapamycin was used to explore the role of mTORC1 signaling in the antidepressant effects of fluoxetine.Results: After successfully establishing the chronic restraint stress paradigm, we observed that the mRNA levels of some IEGs were significantly changed, indicating the activation of neurons and protein synthesis alterations. Then, there was a significant downregulation of glutamate receptors and postsynaptic density protein 95 at protein and mRNA levels. Additionally, synaptic fractionation assay revealed that chronic stress induced synapse loss in the dorsal and ventral hippocampus. Furthermore, these effects were associated with the mTORC1 signaling pathway-mediated protein synthesis, and subsequently the phosphorylation of associated downstream signaling targets was reduced after chronic stress. Finally, we found that intracerebroventricular infusion of rapamycin simulated depression-like behavior and also blocked the antidepressant effects of fluoxetine.Conclusion: Overall, our study suggests that mTORC1 signaling pathway plays a critical role in mediating synapse loss induced by chronic stress, and has part in the behavioral effects of antidepressant treatment.


Author(s):  
Yosuke Kanno ◽  
Kaho Tsuchida ◽  
Chihiro Maruyama ◽  
Kyoko Hori ◽  
Hanako Teramura ◽  
...  

Abstract Objectives Depression is a psychiatric disorder that affects about 10% of the world’s population and is accompanied by anxiety. Depression and anxiety are often caused by various stresses. However, the etiology of depression and anxiety remains unknown. It has been reported that alpha2-antiplasmin (α2AP) not only inhibits plasmin but also has various functions such as cytokine production and cell growth. This study aimed to determine the roles of α2AP on the stress-induced depression and anxiety. Methods We investigated the mild repeated restraint stress-induced depressive and anxiety-like behavior in the α2AP+/+ and α2AP−/− mice using the social interaction test (SIT), sucrose preference test (SPT), and elevated plus maze (EPM). Results The stresses such as the mild repeated restraint stress suppressed α2AP expression in the hippocampus of mice, and the treatment of fluoxetine (selective serotonin reuptake inhibitor [SSRI]) recovered the stress-caused α2AP suppression. We also showed that α2AP deficiency promoted the mild restraint stress-stimulated depression-like behavior such as social withdrawal and apathy and apoptosis in mice. In contrast, α2AP deficiency attenuated the mild restraint stress induced the anxiety-like behavior in mice. Conclusions α2AP affects the pathogenesis of depression and anxiety induced by stress.


Sign in / Sign up

Export Citation Format

Share Document