scholarly journals The Karush-Kuhn-Tucker Optimality Conditions for the Fuzzy Optimization Problems in the Quotient Space of Fuzzy Numbers

Complexity ◽  
2017 ◽  
Vol 2017 ◽  
pp. 1-8 ◽  
Author(s):  
Nanxiang Yu ◽  
Dong Qiu

We propose the solution concepts for the fuzzy optimization problems in the quotient space of fuzzy numbers. The Karush-Kuhn-Tucker (KKT) optimality conditions are elicited naturally by introducing the Lagrange function multipliers. The effectiveness is illustrated by examples.

2021 ◽  
Author(s):  
Mingxuan Zhao ◽  
Yulin Han ◽  
Jian Zhou

Abstract The operational law put forward by Zhou et al. on strictly monotone functions with regard to regular LR fuzzy numbers makes a valuable push to the development of fuzzy set theory. However, its applicable conditions are confined to strictly monotone functions and regular LR fuzzy numbers, which restricts its application in practice to a certain degree. In this paper, we propose an extensive operational law that generalizes the one proposed by Zhou et al. to apply to monotone (but not necessarily strictly monotone) functions with regard to regular LR fuzzy intervals (LR-FIs), of which regular fuzzy numbers can be regarded as particular cases. By means of the extensive operational law, the inverse credibility distributions (ICDs) of monotone functions regarding regular LR-FIs can be calculated efficiently and effectively. Moreover, the extensive operational law has a wider range of applications, which can deal with the situations hard to be handled by the original operational law. Subsequently, based on the extensive operational law, the computational formulae for expected values (EVs) of LR-FIs and monotone functions with regard to regular LR-FIs are presented. Furthermore, the proposed operational law is also applied to dispose fuzzy optimization problems with regular LR-FIs, for which a solution strategy is provided, where the fuzzy programming is converted to a deterministic equivalent first and then a newly-devised solution algorithm is utilized. Finally, the proposed solution strategy is applied to a purchasing planning problem, whose performances are evaluated by comparing with the traditional fuzzy simulation-based genetic algorithm. Experimental results indicate that our method is much more efficient, yielding high-quality solutions within a short time.


2015 ◽  
Vol 15 (1) ◽  
pp. 57-73 ◽  
Author(s):  
Y. Chalco-Cano ◽  
W. A. Lodwick ◽  
R. Osuna-Gómez ◽  
A. Rufián-Lizana

Author(s):  
DENG-FENG LI

The purpose of the paper is to study how to solve a type of matrix games with payoffs of triangular fuzzy numbers. In this paper, the value of a matrix game with payoffs of triangular fuzzy numbers has been considered as a variable of the triangular fuzzy number. First, based on two auxiliary linear programming models of a classical matrix game and the operations of triangular fuzzy numbers, fuzzy optimization problems are established for two players. Then, based on the order relation of triangular fuzzy numbers the fuzzy optimization problems for players are decomposed into three-objective linear programming models. Finally, using the lexicographic method maximin and minimax strategies for players and the fuzzy value of the matrix game with payoffs of triangular fuzzy numbers can be obtained through solving two corresponding auxiliary linear programming problems, which are easily computed using the existing Simplex method for the linear programming problem. It has been shown that the models proposed in this paper extend the classical matrix game models. A numerical example is provided to illustrate the methodology.


Author(s):  
Weldon A. Lodwick ◽  
K. David Jamison

In this paper, we describe interval-based methods for solving constrained fuzzy optimization problems. The class of fuzzy functions we consider for the optimization problems is the set of real-valued functions where one or more parameters/coefficients are fuzzy numbers. The focus of this research is to explore some relationships between fuzzy set theory and interval analysis as it relates to optimization problems.


2020 ◽  
Vol 18 (1) ◽  
pp. 1451-1477
Author(s):  
Ting Xie ◽  
Zengtai Gong ◽  
Dapeng Li

Abstract In this paper, we present the concepts of generalized derivative, directional generalized derivative, subdifferential and conjugate for n-dimensional fuzzy-number-valued functions and discuss the characterizations of generalized derivative and directional generalized derivative by, respectively, using the derivative and directional derivative of crisp functions that are determined by the fuzzy mapping. Furthermore, the relations among generalized derivative, directional generalized derivative, subdifferential and convexity for n-dimensional fuzzy-number-valued functions are investigated. Finally, under two kinds of partial orderings defined on the set of all n-dimensional fuzzy numbers, the duality theorems and saddle point optimality criteria in fuzzy optimization problems with constraints are discussed.


Sign in / Sign up

Export Citation Format

Share Document