scholarly journals Efficient KDM-CCA Secure Public-Key Encryption via Auxiliary-Input Authenticated Encryption

2017 ◽  
Vol 2017 ◽  
pp. 1-27 ◽  
Author(s):  
Shuai Han ◽  
Shengli Liu ◽  
Lin Lyu

KDM[F]-CCA security of public-key encryption (PKE) ensures the privacy of key-dependent messages f(sk) which are closely related to the secret key sk, where f∈F, even if the adversary is allowed to make decryption queries. In this paper, we study the design of KDM-CCA secure PKE. To this end, we develop a new primitive named Auxiliary-Input Authenticated Encryption (AIAE). For AIAE, we introduce two related-key attack (RKA) security notions, including IND-RKA and weak-INT-RKA. We present a generic construction of AIAE from tag-based hash proof system (HPS) and one-time secure authenticated encryption (AE) and give an instantiation of AIAE under the Decisional Diffie-Hellman (DDH) assumption. Using AIAE as an essential building block, we give two constructions of efficient KDM-CCA secure PKE based on the DDH and the Decisional Composite Residuosity (DCR) assumptions. Specifically, (i) our first PKE construction is the first one achieving KDM[Faff]-CCA security for the set of affine functions and compactness of ciphertexts simultaneously. (ii) Our second PKE construction is the first one achieving KDM[Fpolyd]-CCA security for the set of polynomial functions and almost compactness of ciphertexts simultaneously. Our PKE constructions are very efficient; in particular, they are pairing-free and NIZK-free.

2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Yi-Fan Tseng ◽  
Zi-Yuan Liu ◽  
Jen-Chieh Hsu ◽  
Raylin Tso

Predicate encryption (PE), formalized by Katz et al., is a new paradigm of public-key encryption that conceptually captures the public-key encryption that supports fine-grained access control policy. Because of the nature of PE, it is used for cloud storage so that users can retrieve encrypted data without revealing any information about the data to cloud servers and other users. Although lots of PE schemes have been studied, the predicate-hiding security is seldom considered; that is, the user’s secret key may leak sensitive information of the predicate. Additionally, the security of the current predicate-hiding PE schemes relies on the discrete logarithm assumption which cannot resist the quantum attacks in the future. In this paper, we propose a generic PE for inner product under symmetric-key setting, called private IPE, from specific key-homomorphic pseudorandom function (PRF). The rigorous proofs are provided to show that the construction is payload-hiding, attribute-hiding, and predicate-hiding secure. With the advantage of the generic construction, if the underlying PRF can resist quantum attacks, then, through our proposed generic construction, a quantum-resistant private IPE can be obtained.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Tianyu Chi ◽  
Baodong Qin ◽  
Dong Zheng

In recent years, it has become popular to upload patients’ medical data to a third-party cloud server (TCS) for storage through medical Internet of things. It can reduce the local maintenance burden of the medical data and importantly improve accuracy in the medical treatment. As remote TCS cannot be fully trusted, medical data should be encrypted before uploading, to protect patients’ privacy. However, encryption makes search capabilities difficult for patients and doctors. To address this issue, Huang et al. recently put forward the notion of Public-key Authenticated Encryption with Keyword Search (PAEKS) against inside keyword guessing attacks. However, the existing PAEKS schemes rely on time-consuming computation of parings. Moreover, some PAEKS schemes still have security issues in a multiuser setting. In this paper, we propose a new and efficient PAEKS scheme, which uses the idea of Diffie-Hellman key agreement to generate a shared secret key between each sender and receiver. The shared key will be used to encrypt keywords by the sender and to generate search trapdoors by the receiver. We prove that our scheme is semantically secure against inside keyword guessing attacks in a multiuser setting, under the oracle Diffie-Hellman assumption. Experimental results demonstrate that our PAEKS scheme is more efficient than that of previous ones, especially in terms of keyword searching time.


2014 ◽  
Vol 2014 ◽  
pp. 1-9 ◽  
Author(s):  
Rui Guo ◽  
Qiaoyan Wen ◽  
Huixian Shi ◽  
Zhengping Jin ◽  
Hua Zhang

Certificateless cryptography aims at combining the advantages of public key cryptography and identity based cryptography to avoid the certificate management and the key escrow problem. In this paper, we present a novel certificateless public key encryption scheme on the elliptic curve over the ring, whose security is based on the hardness assumption of Bilinear Diffie-Hellman problem and factoring the large number as in an RSA protocol. Moreover, since our scheme requires only one pairing operation in decryption, it is significantly more efficient than other related schemes. In addition, based on our encryption system, we also propose a protocol to protect the confidentiality and integrity of information in the scenario of Internet of Things with constrained resource nodes.


2001 ◽  
Vol 8 (37) ◽  
Author(s):  
Ronald Cramer ◽  
Victor Shoup

We present several new and fairly practical public-key encryption schemes and prove them secure against adaptive chosen ciphertext attack. One scheme is based on Paillier's Decision Composite Residuosity (DCR) assumption, while another is based in the classical Quadratic Residuosity (QR) assumption. The analysis is in the standard cryptographic model, i.e., the security of our schemes does not rely on the Random Oracle model.<br /> <br />We also introduce the notion of a universal hash proof system. Essentially, this is a special kind of non-interactive zero-knowledge proof system for an NP language. We do not show that universal hash proof systems exist for all NP languages, but we do show how to construct very efficient universal hash proof systems for a general class of group-theoretic language membership problems.<br /> <br />Given an efficient universal hash proof system for a language with certain natural cryptographic indistinguishability properties, we show how to construct an efficient public-key encryption schemes secure against adaptive chosen ciphertext attack in the standard model. Our construction only uses the universal hash proof system as a primitive: no other primitives are required, although even more efficient encryption schemes can be obtained by using hash functions with appropriate collision-resistance properties. We show how to construct efficient universal hash proof systems for languages related to the DCR and QR assumptions. From these we get corresponding public-key encryption schemes that are secure under these assumptions. We also show that the Cramer-Shoup encryption scheme (which up until now was the only practical encryption scheme that could be proved secure against adaptive chosen ciphertext attack under a reasonable assumption, namely, the Decision Diffie-Hellman assumption) is also a special case of our general theory.


With the increasing adoption of application running over wireless networking system, there is also an increasing security concern in it. Review of existing security protocols in wireless networks shows that they are highly specific to adversaries and hence they cannot be applicable with the dynamic state of network vulnerabilities. Apart from this, it was also explored that public key encryption requires a drastic change in its design methodology in order to make it more resource friendly for increased network lifetime. Therefore, this manuscript presents a novel framework that develops an enhanced model of public key encryption using algebraic structure that can generate an elite secret key. The study also introduces a design of an efficient trapdoor function which renders maximum resiliency towards different forms of lethal attacks as well as adhere to maximum security standards in wireless network. The study outcome shows that proposed system out performs frequently used existing security standards in many aspects.


Sign in / Sign up

Export Citation Format

Share Document