scholarly journals A Quick Negative Selection Algorithm for One-Class Classification in Big Data Era

2017 ◽  
Vol 2017 ◽  
pp. 1-7 ◽  
Author(s):  
Fangdong Zhu ◽  
Wen Chen ◽  
Hanli Yang ◽  
Tao Li ◽  
Tao Yang ◽  
...  

Negative selection algorithm (NSA) is an important kind of the one-class classification model, but it is limited in the big data era due to its low efficiency. In this paper, we propose a new NSA based on Voronoi diagrams: VorNSA. The scheme of the detector generation process is changed from the traditional “Random-Discard” model to the “Computing-Designated” model by VorNSA. Furthermore, we present an immune detection process of VorNSA under Map/Reduce framework (VorNSA/MR) to further reduce the time consumption on massive data in the testing stage. Theoretical analyses show that the time complexity of VorNSA decreases from the exponential level to the logarithmic level. Experiments are performed to compare the proposed technique with other NSAs and one-class classifiers. The results show that the time cost of the VorNSA is averagely decreased by 87.5% compared with traditional NSAs in UCI skin dataset.


2014 ◽  
Vol 11 (1) ◽  
pp. 76-93 ◽  
Author(s):  
Shuiguang Deng ◽  
Longtao Huang ◽  
Ying Li ◽  
Jianwei Yin

With the development of information technology, data on the Internet is growing even faster than Moore's Law. At the age of big data, more and more services are created to deal with big data, which are called data-intensive services. In most cases, multiple data-intensive services are assembled into a service composition to meet complicated requirements. Since the big-data transmission, which is occurred among component services as well as between a service and a data center, has great influence on the overall performance of a composition, deploying those services cannot be considered independently. This paper proposes an optimal deployment method based on a negative selection algorithm for a data-intensive service composition to reduce the cost of the data transmission. When making a deployment schedule, it considers not only the cost of data transmission among component services, but also the load balance of data centers where component services are deployed. It models the deployment problem as a combination optimization problem and extends a negative selection algorithm to get an optimal deployment plan. A series of experiments are carried out to evaluate the performance of the proposed method using different settings as well as to compare with other methods. The results show that the method outperforms others for the problem of data-intensive service composition deployment.









Sign in / Sign up

Export Citation Format

Share Document