cosine similarity
Recently Published Documents





Shaha Al-Otaibi ◽  
Nourah Altwoijry ◽  
Alanoud Alqahtani ◽  
Latifah Aldheem ◽  
Mohrah Alqhatani ◽  

Social media have become a discussion platform for individuals and groups. Hence, users belonging to different groups can communicate together. Positive and negative messages as well as media are circulated between those users. Users can form special groups with people who they already know in real life or meet through social networking after being suggested by the system. In this article, we propose a framework for recommending communities to users based on their preferences; for example, a community for people who are interested in certain sports, art, hobbies, diseases, age, case, and so on. The framework is based on a feature extraction algorithm that utilizes user profiling and combines the cosine similarity measure with term frequency to recommend groups or communities. Once the data is received from the user, the system tracks their behavior, the relationships are identified, and then the system recommends one or more communities based on their preferences. Finally, experimental studies are conducted using a prototype developed to test the proposed framework, and results show the importance of our framework in recommending people to communities.

2022 ◽  
Vol 16 (2) ◽  
pp. 1-18
Xueyuan Wang ◽  
Hongpo Zhang ◽  
Zongmin Wang ◽  
Yaqiong Qiao ◽  
Jiangtao Ma ◽  

Cross-network anchor link discovery is an important research problem and has many applications in heterogeneous social network. Existing schemes of cross-network anchor link discovery can provide reasonable link discovery results, but the quality of these results depends on the features of the platform. Therefore, there is no theoretical guarantee to the stability. This article employs user embedding feature to model the relationship between cross-platform accounts, that is, the more similar the user embedding features are, the more similar the two accounts are. The similarity of user embedding features is determined by the distance of the user features in the latent space. Based on the user embedding features, this article proposes an embedding representation-based method Con&Net(Content and Network) to solve cross-network anchor link discovery problem. Con&Net combines the user’s profile features, user-generated content (UGC) features, and user’s social structure features to measure the similarity of two user accounts. Con&Net first trains the user’s profile features to get profile embedding. Then it trains the network structure of the nodes to get structure embedding. It connects the two features through vector concatenating, and calculates the cosine similarity of the vector based on the embedding vector. This cosine similarity is used to measure the similarity of the user accounts. Finally, Con&Net predicts the link based on similarity for account pairs across the two networks. A large number of experiments in Sina Weibo and Twitter networks show that the proposed method Con&Net is better than state-of-the-art method. The area under the curve (AUC) value of the receiver operating characteristic (ROC) curve predicted by the anchor link is 11% higher than the baseline method, and [email protected] is 25% higher than the baseline method.

Sensors ◽  
2022 ◽  
Vol 22 (2) ◽  
pp. 663
Byungmo Kim ◽  
Jaewon Oh ◽  
Cheonhong Min

The key to coping with global warming is reconstructing energy governance from carbon-based to sustainable resources. Offshore energy sources, such as offshore wind turbines, are promising alternatives. However, the abnormal climate is a potential threat to the safety of offshore structures because construction guidelines cannot embrace climate outliers. A cosine similarity-based maintenance strategy may be a possible solution for managing and mitigating these risks. However, a study reporting its application to an actual field structure has not yet been reported. Thus, as an initial study, this study investigated whether the technique is applicable or whether it has limitations in the real field using an actual example, the Gageocho Ocean Research Station. Consequently, it was found that damage can only be detected correctly if the damage states are very similar to the comparison target database. Therefore, the high accuracy of natural frequencies, including environmental effects, should be ensured. Specifically, damage scenarios must be carefully designed, and an alternative is to devise more efficient techniques that can compensate for the present procedure.

2022 ◽  
Vol 2 (2) ◽  
pp. 90-95
Muhammad Azmi

Plagiarism is the activity of duplicating or imitating the work of others then recognized as his own work without the author's permission or listing the source. Plagiarism or plagiarism is not something that is difficult to do because by using a copy-paste-modify technique in part or all of the document, the document can be said to be the result of plagiarism or duplication.             The practice of plagiarism occurs because students are accustomed to taking the writings of others without including the source of origin, even copying in its entirety and exactly the same. Plagiarism practices are mostly carried out by students, especially when completing the final project or thesis             One way that can be used to prevent the practice of plagiarism is by doing prevention and detecting. Plagiarism detection uses the concept of similarity or document similarity is one way to detect copy & paste plagiarism and disguised plagiarism. one of the right methods that can be done to detect plagiarism by analyzing the level of document plagiarism using the Cosine Similarity method and the TF-IDF weighting. This research produces an application that is able to process the similarity value of the document to be tested. Hasik testing shows that it is appropriate between manual calculations and implementation of algorithms in the application made. Use of the Literature Library is quite effective in the Stemming process. Calculations that use stemming will have a higher similarity value compared to calculations without stemming methods.

Sebatik ◽  
2022 ◽  
Vol 26 (1) ◽  
Aliffia Rosita ◽  
Novianti Puspitasari ◽  
Vina Zahrotun Kamila

Artikel ini menawarkan alternatif solusi atas banyaknya jumlah buku yang terdapat dalam perpustakaan sehingga membuat beberapa mahasiswa kesulitan dalam menentukan pilihan mengenai buku yang tepat sesuai dengan ketertarikan mahasiswa. Metode rekomendasi yang akurat bisa menjadi sebuah solusi untuk mengatasi permasalahan tersebut.  Metode item-based collaborative filtering merupakan metode yang memberikan prediksi sebuah item kepada pengguna berdasarkan ketertarikan dan opini dari pengguna lain. Penelitian ini menggunakan metode item-based collaborative filtering yang diterapkan pada rekomendasi untuk memberikan rekomendasi buku kepada mahasiswa. Data yang digunakan pada penelitian ini adalah data buku dan pengunjung dari tahun 2016 hingga 2019. Metode item-based collaborative bekerja dengan mencari nilai kemiripan suatu item yang belum pernah diberikan rating dengan item yang telah diberi rating menggunakan persamaan cosine similarity. Hasil perhitungan kemiripan antar item digunakan pada perhitungan prediksi rating menggunakan persamaan Weighted sum yang nilai prediksinya akan dijadikan rekomendasi kepada mahasiswa. Hasil penelitian menunjukkan bahwa metode item-based collaborative filtering mampu memberikan rekomendasi kepada mahasiswa dengan persentase pengujian akurasi MAPE sebesar 22% dan pengujian akurasi MAE sebesar 0.568.

2022 ◽  
Vol 7 (1) ◽  
pp. 23-36
Yefta Christian ◽  
Kelvin Kelvin

Lembaga Kursus dan Pelatihan (LKP) merupakan pendidikan non-formal yang menyediakan berbagai pelatihan khusus untuk mendidik keterampilan pelajar. Namun, terdapat hal yang sering menjadi kendala bagi calon pelajar yaitu bingung melakukan dalam melakukan pemilihan kursus sesuai dengan preferensinya. Oleh karena itu, tujuan dari penelitian ini adalah merancang sebuah aplikasi kursus online dengan sistem rekomendasi metode Content-based Filtering. Selain itu, penelitian ini juga menerapkan algoritma cosine similarity untuk menentukan kursus yang serupa dengan riwayat kursus yang pernah diakses oleh pengguna. Dataset yang digunakan untuk menjalankan algoritma sistem rekomendasi diambil dari situs Kaggle berjudul “Udemy Course” dengan jumlah data sebanyak 3,682 records. Hasil akhir dari penelitian ini adalah sebuah aplikasi kursus online yang dapat memberikan rekomendasi kursus berdasarkan nilai kesamaan yang paling tinggi dari algoritma cosine similarity.

2022 ◽  
Vol 11 (2) ◽  
pp. 167-180
Laxminarayan Sahoo

The intention of this paper is to propose some similarity measures between Fermatean fuzzy sets (FFSs). Firstly, we propose some score based similarity measures for finding similarity measures of FFSs and also propose score based cosine similarity measures between FFSs. Furthermore, we introduce three newly scored functions for effective uses of Fermatean fuzzy sets and discuss some relevant properties of cosine similarity measure. Fermatean fuzzy sets introduced by Senapati and Yager can manipulate uncertain information more easily in the process of multi-criteria decision making (MCDM) and group decision making. Here, we investigate score based similarity measures of Fermatean fuzzy sets and scout the uses of FFSs in pattern recognition. Based on different types of similarity measures a pattern recognition problem viz. personnel appointment is presented to describe the use of FFSs and its similarity measure as well as scores. The counterfeit results show that the proposed method is more malleable than the existing method(s). Finally, concluding remarks and the scope of future research of the proposed approach are given.

Sign in / Sign up

Export Citation Format

Share Document