scholarly journals Overvoltage and Insulation Coordination of Overhead Lines in Multiple-Terminal MMC-HVDC Link for Wind Power Delivery

2017 ◽  
Vol 2017 ◽  
pp. 1-7
Author(s):  
Huiwen He ◽  
Lei Wang ◽  
Peihong Zhou ◽  
Fei Yan

The voltage-sourced converter-based HVDC link, including the modular multilevel converter (MMC) configuration, is suitable for wind power, photovoltaic energy, and other kinds of new energy delivery and grid-connection. Current studies are focused on the MMC principles and controls and few studies have been done on the overvoltage of transmission line for the MMC-HVDC link. The main reason is that environmental factors have little effect on DC cables and the single-phase/pole fault rate is low. But if the cables were replaced by the overhead lines, although the construction cost of the project would be greatly reduced, the single-pole ground fault rate would be much higher. This paper analyzed the main overvoltage types in multiple-terminal MMC-HVDC network which transmit electric power by overhead lines. Based on ±500 kV multiple-terminal MMC-HVDC for wind power delivery project, the transient simulation model was built and the overvoltage types mentioned above were studied. The results showed that the most serious overvoltage was on the healthy adjacent line of the faulty line caused by the fault clearing of DC breaker. Then the insulation coordination for overhead lines was conducted according to the overvoltage level. The recommended clearance values were given.

2012 ◽  
Vol 9 (3) ◽  
pp. 343-359 ◽  
Author(s):  
Azzeddine Benlamoudi ◽  
Rachid Abdessemed

This paper deals with the application of an autonomous Self-Excited Induction Generator (SEIG) in a small wind power conversion system (WPCS). Such conversion system has capability to supply power demand of the loads with constant voltage and frequency, for which a power managing method is proposed. Voltage Sourced Converter (VSC) along with Battery Energy Storage System (BESS) is used to handle power flow between the SEIG and loads. The proposed control scheme, using a single voltage closed-loop control, is found to be suitable to regulate both voltage and frequency. The WPCS is modelled in MATLAB/Simulink and Power System Block-set (PSB). Simulation results show that Voltage Frequency Controller (VFC) has ability to keep the voltage and frequency constant in spite of perturbations.


Sign in / Sign up

Export Citation Format

Share Document