scholarly journals Primary Resonance of van der Pol Oscillator under Fractional-Order Delayed Feedback and Forced Excitation

2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Jufeng Chen ◽  
Xianghong Li ◽  
Jianhua Tang ◽  
Yafeng Liu

The primary resonance of van der Pol oscillator under fractional-order delayed negative feedback and forced excitation is studied. Firstly, the approximate analytical solution is obtained based on the averaging method, and it could be found that the fractional-order delayed feedback has not only the property of delayed velocity feedback but also that of delayed displacement feedback. Moreover, the amplitude-frequency equation for the steady-state solution is established, and its stability conditions are also obtained. Then, the results of the approximate analytical solution and numerical integration are compared and analyzed. The agreement between the two methods is very high, so that the correctness and accuracy of the approximate analytical solution are verified. Finally, the effects of all the parameters in the fractional-order delayed feedback on the amplitude-frequency curves are analyzed. It could be concluded that fractional-order delayed feedback has important influences on the dynamical behavior of van der Pol oscillator, which is very significant to the optimization and control of a similar system.

2014 ◽  
Vol 77 (4) ◽  
pp. 1629-1642 ◽  
Author(s):  
Yong-Jun Shen ◽  
Peng Wei ◽  
Shao-Pu Yang

2018 ◽  
Vol 2 (3) ◽  
pp. 21 ◽  
Author(s):  
Guy Eyebe ◽  
Gambo Betchewe ◽  
Alidou Mohamadou ◽  
Timoleon Kofane

In the present study, the nonlinear vibration of a nanobeam resting on the fractional order viscoelastic Winkler–Pasternak foundation is studied using nonlocal elasticity theory. The D’Alembert principle is used to derive the governing equation and the associated boundary conditions. The approximate analytical solution is obtained by applying the multiple scales method. A detailed parametric study is conducted, and the effects of the variation of different parameters belonging to the application problems on the system are calculated numerically and depicted. We remark that the order and the coefficient of the fractional derivative have a significant effect on the natural frequency and the amplitude of vibrations.


Author(s):  
Nguyen Van Khang ◽  
Bui Thi Thuy ◽  
Truong Quoc Chien

This study aims to investigate the harmonic resonance of third-order forced van der Pol oscillator with fractional-order derivative using the asymptotic method. The approximately analytical solution for the system is first determined, and the amplitude–frequency equation of the oscillator is established. The stability condition of the harmonic solution is then obtained by means of Lyapunov theory. A comparison between the traditional integer-order of forced van der Pol oscillator and the considered fractional-order one follows the numerical simulation. Finally, the numerical results are analyzed to show the influences of the parameters in the fractional-order derivative on the steady-state amplitude, the amplitude–frequency curves, and the system stability.


Sign in / Sign up

Export Citation Format

Share Document