scholarly journals Comparison between the Correlations of Retinal Nerve Fiber Layer Thickness Measured by Spectral Domain Optical Coherence Tomography and Visual Field Defects in Standard Automated White-on-White Perimetry versus Pulsar Perimetry

2017 ◽  
Vol 2017 ◽  
pp. 1-6
Author(s):  
Maged Alnawaiseh ◽  
Lisann Hömberg ◽  
Nicole Eter ◽  
Verena Prokosch

Purpose.To compare the structure-function relationships between retinal nerve fiber layer thickness (RNFLT) and visual field defects measured either by standard automated perimetry (SAP) or by Pulsar perimetry (PP).Materials and Methods.263 eyes of 143 patients were prospectively included. Depending on the RNFLT, patients were assigned to the glaucoma group (group A: RNFL score 3–6) or the control group (group B: RNFL score 0–2). Structure-function relationships between RNFLT and mean sensitivity (MS) measured by SAP and PP were analyzed.Results.Throughout the entire group, the MS assessed by PP and SAP correlated significantly with RNFLT in all sectors. In the glaucoma group, there was no significant difference between the correlations RNFL-SAP and RNFL-PP, whereas a significant difference was found in the control group.Conclusions.In the control group, the correlation between structure and function based on the PP data was significantly stronger than that based on SAP.

1997 ◽  
Vol 211 (6) ◽  
pp. 338-340 ◽  
Author(s):  
M. Marraffa ◽  
C. Mansoldo ◽  
R. Morbio ◽  
R. De Natale ◽  
L. Tomazzoli ◽  
...  

Author(s):  
Hylton R. Mayer ◽  
Marc L. Weitzman

Clinical experience and multiple prospective studies, such as the Collaborative Normal Tension Glaucoma Study and the Los Angeles Latino Eye Study, have demonstrated that the diagnosis of glaucoma is more complex than identifying elevated intraocular pressure. As a result, increased emphasis has been placed on measurements of the structural and functional abnormalities caused by glaucoma. The refinement and adoption of imaging technologies assist the clinician in the detection of glaucomatous damage and, increasingly, in identifying the progression of structural damage. Because visual field defects in glaucoma patients occur in patterns that correspond to the anatomy of the nerve fiber layer of the retina and its projections to the optic nerve, visual functional tests become a link between structural damage and functional vision loss. The identification of glaucomatous damage and management of glaucoma require appropriate, sequential measurements and interpretation of the visual field. Glaucomatous visual field defects usually are of the nerve fiber bundle type, corresponding to the anatomic arrangement of the retinal nerve fiber layer. It is helpful to consider the division of the nasal and temporal retina as the fovea, not the optic nerve head, because this is the location that determines the center of the visual field. The ganglion cell axon bundles that emanate from the nasal side of the retina generally approach the optic nerve head in a radial fashion. The majority of these fibers enter the nasal half of the optic disc, but fibers that represent the nasal half of the macula form the papillomacular bundle to enter the temporal-most aspect of the optic nerve. In contrast, the temporal retinal fibers, with respect to fixation, arc around the macula to enter the superotemporal and inferotemporal portions of the optic disc. The origin of these arcuate temporal retinal fibers strictly respects the horizontal retinal raphe, temporal to the fovea. As a consequence of this superior-inferior segregation of the temporal retinal fibers, lesions that affect the superotemporal and inferotemporal poles of the optic disc, such as glaucoma, tend to cause arcuateshaped visual field defects extending from the blind spot toward the nasal horizontal meridian.


Sign in / Sign up

Export Citation Format

Share Document