scholarly journals Focus Energy Determination of Mining Microseisms Using Residual Seismic Wave Attenuation in Deep Coal Mining

2018 ◽  
Vol 2018 ◽  
pp. 1-13 ◽  
Author(s):  
Mingwei Zhang ◽  
Shengdong Liu ◽  
Shuzhao Chen ◽  
Yanlong Chen ◽  
Guang Xu ◽  
...  

Based on the energy attenuation characteristics of residual wave in deep rock, a method was developed to determine the microseismic focus energy. Differential energy loss in infinitesimal spreading distance is logically deduced, upon which energy attenuation equation was established. With a logarithmic transformation, a linear relation of the residual seismic energy with distance is formulated. Its intercept was used to determine the microseismic focus energy. The result is compared with that determined by the energy density method. The reliability of the determined focus energy and the impact of the built-in velocity threshold on the residual wave energy computation are discussed. Meanwhile, the energy absorption coefficient used for representing the absorption characteristics of the rock medium in the mining region under study is also clarified. Key findings show that the microseismic focus energy confirmed by the residual wave attenuation is reliable. The result’s accuracy is quite high, especially for the events in deep rock with great homogeneity. The developed focus energy computation method is closely dependent on the integrity of waveform, accuracy of repositioning, and reliability of effective components extraction. The new method has been shown to be effective and practical.

Geophysics ◽  
1981 ◽  
Vol 46 (5) ◽  
pp. 806-808 ◽  
Author(s):  
N. C. Dutta

In the petroleum industry there is considerable current interest in understanding the causes of seismic energy loss. During the past few years, considerable progress has been made in the field of seismic wave attenuation as a result of both controlled laboratory studies of the static and the dynamic properties of rock specimens and theoretical modeling. During the 49th Annual International Meeting of the Society of Exploration Geophysicists in New Orleans, a research workshop on Seismic Loss Mechanisms was organized. The purpose of this workshop was to assess current understanding of the physical processes that cause attenuation of seismic energy. The workshop, organized by Kenneth Larner of Western Geophysical and the author, featured a multispeaker format involving invited papers from both industry and academia. The presentations were followed by discussions lasting approximately 90 minutes which included the speakers, the audience, and a panel of experts in the field of seismology.


Geophysics ◽  
1989 ◽  
Vol 54 (4) ◽  
pp. 524-527 ◽  
Author(s):  
R. Mörig ◽  
H. Burkhardt

Seismic wave attenuation has been a subject of interest during the last 40 years because it may be of use in interpreting seismic data. From this attenuation parameter, more detailed information about the lithology of the subsurface may be deduced if we understand the absorption mechanisms by which dissipation of seismic energy is governed. We are, therefore, studying in the laboratory the effects of different parameters such as porosity, permeability, pore fluid, and saturation state on the absorption of seismic waves in porous rocks over a wide spectrum ranging from seismic to ultrasonic frequencies (Burkhardt et al., 1986).


2018 ◽  
Vol 1 ◽  
pp. 110-116
Author(s):  
V.V. Romanov ◽  
◽  
K.S. Malskiy ◽  
A.I. Poserenin ◽  
A.N. Dronov ◽  
...  

Author(s):  
М.А. Новиков ◽  
В.В. Лисица ◽  
А.А. Козяев

Одной из актуальных задач современной прикладной геофизики является выделение характерных признаков наличия развитой трещиноватости в пласте по сейсмическим данным. Более того, необходимо выделять флюидозаполненные системы трещин, образующих связанную систему трещин, способную обеспечивать достаточную гидродинамическую проницаемость резервуара. В настоящей статье представлен численный алгоритм расчета волновых полей в трещиноватых пороупругих средах, основанный на конечно-разностной аппроксимации уравнений Био. На основе численных экспериментов показано, что связность трещин, т.е. наличие систем пересекающихся трещин, существенно повышает поглощение сейсмической энергии, что обусловлено возникновением локальных потоков флюида внутри трещин. Приводится детальный частотный анализ затухания сейсмических волн и обусловленной этим дисперсии. One of important problems in modern applied geophysics is to distinguish the specific indications of developed fractures in geological formations using seismic data. In addition, it is necessary to distinguish the fluid-saturated systems of cracks capable of providing a sufficient hydrodynamic permeability of reservoirs. In this paper we propose a numerical algorithm to study wave fields in fractured porous fluid-saturated media on the basis of a finite-difference approximation of Biot's equations. Our numerical results show that the intersecting fractures significantly increase the absorption of seismic energy due to the appearance of fluid flows in cracks. A detailed frequency analysis of seismic wave attenuation is given.


Sign in / Sign up

Export Citation Format

Share Document