scholarly journals Design and Performance Evaluation of Propeller for Solar-Powered High-Altitude Long-Endurance Unmanned Aerial Vehicle

2018 ◽  
Vol 2018 ◽  
pp. 1-23 ◽  
Author(s):  
Donghun Park ◽  
Yunggyo Lee ◽  
Taehwan Cho ◽  
Cheolwan Kim

Design, wind tunnel test, computational fluid dynamics (CFD) analysis, and flight test data analysis are conducted for the propeller of EAV-3, which is a solar-powered high-altitude long-endurance unmanned aerial vehicle developed by Korea Aerospace Research Institute. The blade element momentum theory, in conjunction with minimum induced loss, is used as a basic design method. Airfoil data are obtained from CFD analysis, which takes into account the low Reynolds number effect. The response surface is evaluated for design variables by using design of experiment and kriging metamodel. The optimization is based on desirability function. A wind tunnel test is conducted on the designed propeller. Numerical analyses are performed by using a commercial CFD code, and results are compared with those obtained from the design code and wind tunnel test data. Flight test data are analyzed based on several approximations and assumptions. The propeller performance is in good agreement with the numerical and measurement data in terms of tendency and behavior. The comparison of data confirms that the design method, wind tunnel test, and CFD analysis used in this study are practically useful and valid for the development of a high-altitude propeller.

2020 ◽  
Vol 10 (4) ◽  
pp. 1300 ◽  
Author(s):  
Xin Zhao ◽  
Zhou Zhou ◽  
Xiaoping Zhu ◽  
An Guo

This paper describes our work on a small, hand-launched, solar-powered unmanned aerial vehicle (UAV) suitable for low temperatures and high altitudes, which has the perpetual flight potential for conservation missions for rare animals in the plateau area in winter. Firstly, the conceptual design method of a small, solar-powered UAV based on energy balance is proposed, which is suitable for flight in high-altitude and low-temperature area. The solar irradiance model, which can reflect the geographical location and time, was used. Based on the low-temperature discharge test of the battery, a battery weight model considering the influence of low temperature on the battery performance was proposed. Secondly, this paper introduces the detailed design of solar UAV for plateau area, including layout design, structure design, load, and avionics. To increase the proportion of solar cells covered, the ailerons were removed and a rudder was used to control both roll and yaw. Then, the dynamics model of an aileron-free layout UAV was developed, and the differences in maneuverability and stability of aileron-free UAV in plateau and plain areas were analyzed. The control law and trajectory tracking control law were designed for the aileron-free UAV. Finally, the flight test was conducted in Qiangtang, Tibet, at an altitude of 4500 m, China’s first solar-powered UAV to take off and land above 4500 m on the plateau in winter (−30 °C). The test data showed the success of the scheme, validated the conceptual design method and the success of the control system for aileron-free UAV, and analyzed the feasibility of perpetual flight carrying different loads according to the flight energy consumption data.


Sign in / Sign up

Export Citation Format

Share Document