scholarly journals Nano-TiO2 Doped Chitosan Scaffold for the Bone Tissue Engineering Applications

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Pawan Kumar

The present focus is on the synthesis of highly effective, porous, biocompatible, and inert scaffold by using ceramic nanoparticles and natural polymer for the application in tissue engineering. Freeze-drying method was used to fabricate nano-TiO2 doped chitosan sample scaffold. Nano-TiO2/chitosan scaffold can considered as an effective solution for damaged tissue regeneration. The interaction between chitosan (polysaccharide) and nano-TiO2 makes it highly porous and brittle that could be an effective substitute for bone tissue engineering. The TiO2 nanoparticles have a great surface area and inert properties while chitosan is highly biocompatible and antibacterial. The physiochemical properties of TiO2 nanoparticles and scaffold are evaluated by XRD and FTIR. The nanoparticles doped scaffold has given improved density (1.2870g/cm3) that is comparatively relevant to the dry bone (0.8 - 1.2 gm/cm3). The open and closed porosity of sample scaffold were measured by using Brunauer–Emmett–Teller analyzer (BET) and scanning electron microscopy (SEM). The mechanical properties are examined by stable microsystem (Texture Analyzer). The in vitro degradation of scaffold is calculated in PBS containing lysozyme at pH 7.4. Electron and fluorescence microscopy are used to study morphological characteristics of the scaffolds and TiO2 nanoparticles. The growth factor and drug-loaded composites can improve osteogenesis and vascularization.

Author(s):  
Tran Thanh Hoai ◽  
Nguyen Kim Nga

In this study, porous scaffolds were fabricated using inorganic material-hydroxyapatite and chitosan for bone-tissue engineering. The combination of hydroxyapatite and chitosan may result in increasing biocompatibility of the scaffolds. The scaffolds were prepared by solvent casting and paticulate leaching method. Bioactivity of the scaffolds was evaluated through in vitro experiments by soaking scaffold samples in simulated body fluid (SBF). The scaffolds obtained were highly porous and interconnected with a mean pore size of around 200µm and porosity about 79 %. The apatite-mineral layer was produced on the HAp/chitosan after 10 days of soaking in SBF, however, it was not observed on the chitosan scaffold after 10 days soaking. The results revealed that the HAp/chitosan scaffold showed better bioactivity than the chitosan scaffold. Keywords Scaffold, Chitosan, Apatite, SBF. In this study, porous scaffolds were fabricated using inorganic material-hydroxyapatite and chitosan for bone-tissue engineering. The combination of hydroxyapatite and chitosan may result in increasing biocompatibility of the scaffolds. The scaffolds were prepared by solvent casting and paticulate leaching method. Bioactivity of the scaffolds was evaluated through in vitro experiments by soaking scaffold samples in simulated body fluid (SBF). The scaffolds obtained were highly porous and interconnected with a mean pore size of around 200µm and porosity about 79 %. The apatite-mineral layer was produced on the HAp/chitosan after 10 days of soaking in SBF, however, it was not observed on the chitosan scaffold after 10 days soaking. The results revealed that the HAp/chitosan scaffold showed better bioactivity than the chitosan scaffold. Keywords: Scaffold, Chitosan, Apatite, SBF.   In this study, porous scaffolds were fabricated using inorganic material-hydroxyapatite and chitosan for bone-tissue engineering. The combination of hydroxyapatite and chitosan may result in increasing biocompatibility of the scaffolds. The scaffolds were prepared by solvent casting and paticulate leaching method. Bioactivity of the scaffolds was evaluated through in vitro experiments by soaking scaffold samples in simulated body fluid (SBF). The scaffolds obtained were highly porous and interconnected with a mean pore size of around 200µm and porosity about 79 %. The apatite-mineral layer was produced on the HAp/chitosan after 10 days of soaking in SBF, however, it was not observed on the chitosan scaffold after 10 days soaking. The results revealed that the HAp/chitosan scaffold showed better bioactivity than the chitosan scaffold. Keywords: Scaffold, Chitosan, Apatite, SBF. References [1] M.P. Bostrom, D.A. Seigerman, The clinical use of allografts, demineralized bone matrices, synthetic bone graft substitutes and osteoinductive growth factors: a survey study, Hss. Journal 1 (2005) 9-18. https://doi.org/10. 1007/s11420-005-0111-5.[2] T.T. Hoai, N.K Nga, L.T. Giang, T.Q. Huy, P.N.M. Tuan, B.T.T. Binh, Hydrothermal Synthesis of Hydroxyapatite Nanorods for Rapid Formation of Bone-Like Mineralization, J. Electron. Mater. 46 (2017) 5064-5072. https:// doi.org/10.1007/s11664-017-5509-6.[3] M. Rinaudo, Chitin and chitosan: properties and applications, Prog. Polym. Sci. 31 (2006) 603-632. https://doi.org/10.1016/j.progpolymsci.2006. 06.001.[4] N.K. Nga, H.D. Chinh, P.T.T Hong, T.Q. Huy, Facile chitosan films for high performance removal of reactive blue 19 dye from aqueous solution, J. Polym. Environ. 25 (2007) 146-155. https://doi.org/10.1007/s10924-016-0792-5.[5] M.N.V Ravi Kumar, R.A.A Muzzarelli, H. Sashiwa, A.J. Domb, Chitosan chemistry and pharmaceutical perspectives, Chem. Rev. 104 (2004) 6017-6084. https://doi.org/10.1021/cr03 0441b.[6] J.M. Karp, M.S. Shoichet, J.E. Davies, Bone formation on two‐dimensional poly (DL‐lactide‐co‐glycolide)(PLGA) films and three‐dimensional PLGA tissue engineering scaffolds in vitro, J. Biomed. Mater. Res. A 64 (2003) 388-396. https://doi.org/10.1002/jbm.a.10420.[7] J.F. Mano, R.L. Reis, Osteochondral defects: present situation and tissue engineering approaches, J. Tissue. Eng. Regen. Med. 1 (2007) 261-273. https://doi.org/10.1002/term.37. [8] A.G. Mikos, J.S. Temenoff, Formation of highly porous biodegradable scaffolds for tissue engineering, Electron. J. Biotechn. 3 (2000) 23-24. http://dx.doi.org/10.4067/S0717-3458200000 0200003.[9] W.W. Thein-Han, R.D.K Misra, Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering, Acta Biomater. 5 (2009) 1182–1197. https://doi.org/ 10.1016/j.actbio.2008.11.025.[10] Y. Zhang, J.R. Venugopal, A.E. Turki, S. Ramakrishna, B. Su, C.T. Lim, Electrospun biomimetic nanocomposite nanofibers of hydroxyapatite/chitosan for bone tissue engineering, Biomaterials 29 (2008) 4314–4322. https://doi.org/10.1016/j.biomaterials.2008.07.038.[11] B.X. Vương, Tổng hợp và đặc trưng vật liệu composite hydroxyapatite/chitosan ứng dụng trong kỹ thuật y sinh.,Tạp chí Khoa học ĐHQGHN: Khoa học Tự nhiên và Công nghệ Tập 34 (2018) 9-15. https://doi.org/10.25073/ 2588-1140/vnunst.4689.[12] N.K. Nga, T.T. Hoai, P.H. Viet, Biomimetic scaffolds based on hydroxyapatite nanorod/poly (D, L) lactic acid with their corresponding apatite-forming capability and biocompatibility for bone-tissue engineering, Colloids Surf. B Biointerf. 128 (2015) 506-514. https://doi.org/10. 1016/j.colsurfb.2015.03.001.[13] N.K. Nga, L.T. Giang, T.Q. Huy, C. Migliaresi, Surfactant-assisted size control of hydroxyapatite nanorods for bone tissue engineering, Colloids Surf. B: Biointerf. 116 (2014) 666-673. https://doi.org/10.1016/j.colsurfb.2013.11.001.[14] C.R. Kothapalli, M.T. Shaw, M. Wei, Biodegradable HA-PLA 3-D porous scaffolds: effect of nano-sized filler content on scaffold properties, Acta Biomater. 1 (2005) 653-662. https://doi.org/10.1016/j.actbio.2005.06.005.[15] T. Kokubo, H. Takadama, How useful is SBF in predicting in vivo bone bioactivity?, Biomaterials 27 (2006) 2907-2915. https://doi.org/10.1016/j. biomaterials.2006.01.017[16] T.T. Hoai, N.K. Nga, Effect of pore architecture on osteoblast adhesion and proliferation on hydroxyapatite/poly (D, L) lactic acid-based bone scaffolds, J. Iran. Chem. Soc. 15 (2018) 1663-1671. https://doi.org/10.1007/s13738-018-1365-4.        


2010 ◽  
Vol 6 (9) ◽  
pp. 3457-3470 ◽  
Author(s):  
Tao Jiang ◽  
Syam P. Nukavarapu ◽  
Meng Deng ◽  
Ehsan Jabbarzadeh ◽  
Michelle D. Kofron ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document