hydroxyapatite composite
Recently Published Documents


TOTAL DOCUMENTS

618
(FIVE YEARS 161)

H-INDEX

60
(FIVE YEARS 11)

Crystals ◽  
2022 ◽  
Vol 12 (1) ◽  
pp. 96
Author(s):  
Agus Pramono ◽  
Gerald Ensang Timuda ◽  
Ganang Pramudya Ahmad Rifai ◽  
Deni Shidqi Khaerudini

Spinel-based hydroxyapatite composite (SHC) has been synthesized utilizing bovine bones as the source of the hydroxyapatite (HAp) and beverage cans as the aluminum (Al) source. The bovine bones were defatted and calcined in the air atmosphere to transform them into hydroxyapatite. The beverage cans were cut and milled to obtain fine Al powder and then sieved to obtain three different particle mesh size fractions: +100#, −140# + 170#, and −170#, or Al particle size of >150, 90–150, and <90 µm, respectively. The SHC was synthesized using the self-propagating intermediate-temperature synthesis (SIS) method at 900 °C for 2 h with (HAp:Al:Mg) ratio of (87:10:3 wt.%) and various compaction pressure of 100, 171, and 200 MPa. It was found that the mechanical properties of the SHC are influenced by the Al particle size and the compaction pressure. Smaller particle size produces the tendency of increasing the hardness and reducing the porosity of the composite. Meanwhile, increasing compaction pressure produces a reduction of the SHC porosity. The increase in the hardness is also observed by increasing the compaction pressure except for the smallest Al particle size (<90 µm), where the hardness instead becomes smaller.


Luminescence ◽  
2022 ◽  
Author(s):  
Mehrez E. El‐Naggar ◽  
Ola A. Abu Ali ◽  
Dalia I. Saleh ◽  
M. A. Abu‐Saied ◽  
M. K. Ahmed ◽  
...  

Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7515
Author(s):  
Yasmine Mendes Pupo ◽  
Lidiane Maria Boldrini Leite ◽  
Alexandra Cristina Senegaglia ◽  
Liziane Antunes ◽  
Jessica Mendes Nadal ◽  
...  

In this study, the preparation and characterization of three hydroxyapatite-based bioactive scaffolds, including hydroxyapatite microspheres (HAps), amoxicillin–hydroxyapatite composite (Amx–HAp), and collagen–hydroxyapatite composite (Col–HAp) were performed. In addition, their behavior in human dental pulp mesenchymal stem cell (hDPSC) culture was investigated. HAps were synthesized through the following methods: microwave hydrothermal, hydrothermal reactor, and precipitation, respectively. hDPSCs were obtained from samples of third molars and characterized by immunophenotypic analysis. Cells were cultured on scaffolds with osteogenic differentiation medium and maintained for 21 days. Cytotoxicity analysis and migration assay of hDPSCs were evaluated. After 21 days of induction, no differences in genes expression were observed. hDPSCs highly expressed the collagen IA and the osteonectin at the mRNA. The cytotoxicity assay using hDPSCs demonstrated that the Col–HAp group presented non-viable cells statistically lower than the control group (p = 0.03). In the migration assay, after 24 h HAps revealed the same migration behavior for hDPSCs observed compared to the positive control. Col–HAp also provided a statistically significant higher migration of hDPSCs than HAps (p = 0.02). Migration results after 48 h for HAps was intermediate from those achieved by the control groups. There was no statistical difference between the positive control and Col–HAp. Specifically, this study demonstrated that hydroxyapatite-based bioactive scaffolds, especially Col-Hap, enhanced the dynamic parameters of cell viability and cell migration capacities for hDPSCs, resulting in suitable adhesion, proliferation, and differentiation of this osteogenic lineage. These data presented are of high clinical importance and hold promise for application in therapeutic areas, because Col–HAp can be used in ridge preservation, minor bone augmentation, and periodontal regeneration. The development of novel hydroxyapatite-based bioactive scaffolds with clinical safety for bone formation from hDPSCs is an important yet challenging task both in biomaterials and cell biology.


Materials ◽  
2021 ◽  
Vol 14 (24) ◽  
pp. 7513
Author(s):  
Albena Daskalova ◽  
Emil Filipov ◽  
Liliya Angelova ◽  
Radostin Stefanov ◽  
Dragomir Tatchev ◽  
...  

The use of laser processing for the creation of diverse morphological patterns onto the surface of polymer scaffolds represents a method for overcoming bacterial biofilm formation and inducing enhanced cellular dynamics. We have investigated the influence of ultra-short laser parameters on 3D-printed poly-ε-caprolactone (PCL) and poly-ε-caprolactone/hydroxyapatite (PCL/HA) scaffolds with the aim of creating submicron geometrical features to improve the matrix biocompatibility properties. Specifically, the present research was focused on monitoring the effect of the laser fluence (F) and the number of applied pulses (N) on the morphological, chemical and mechanical properties of the scaffolds. SEM analysis revealed that the femtosecond laser treatment of the scaffolds led to the formation of two distinct surface geometrical patterns, microchannels and single microprotrusions, without triggering collateral damage to the surrounding zones. We found that the microchannel structures favor the hydrophilicity properties. As demonstrated by the computer tomography results, surface roughness of the modified zones increases compared to the non-modified surface, without influencing the mechanical stability of the 3D matrices. The X-ray diffraction analysis confirmed that the laser structuring of the matrices did not lead to a change in the semi-crystalline phase of the PCL. The combinations of two types of geometrical designs—wood pile and snowflake—with laser-induced morphologies in the form of channels and columns are considered for optimizing the conditions for establishing an ideal scaffold, namely, precise dimensional form, mechanical stability, improved cytocompatibility and antibacterial behavior.


Author(s):  
Jagadish H. Patil ◽  
K.A. Vishnumurthy ◽  
Raviraj Kusanur ◽  
Raveendra Melavanki

Sign in / Sign up

Export Citation Format

Share Document