International Journal of Biomaterials
Latest Publications


TOTAL DOCUMENTS

274
(FIVE YEARS 73)

H-INDEX

30
(FIVE YEARS 6)

Published By Hindawi Limited

1687-8795, 1687-8787

2022 ◽  
Vol 2022 ◽  
pp. 1-8
Author(s):  
Fadoua Bennouna ◽  
Moulay Sadiki ◽  
Soumya Elabed ◽  
Saad Ibnsouda Koraichi ◽  
Mohammed Lachkar

Despite having been used for ages to preserve wood against several effects (biological attack and moisture effects) that cause its degradation, the effect of vegetable oils on the cedar wood physicochemical properties is poorly known. Thus, in this study, the hydrophobicity, electron-acceptor (γ+), and electron-donor (γ−) properties of cedar wood before and after treatment with vegetable oils have been determined using contact angle measurement. The cedar wood has kept its hydrophobic character after treatment with the different vegetable oils. It has become more hydrophobic quantitatively with values of surface energy ranged from −25.84 to −43.45 mJ/m2 and more electron donors compared to the untreated sample. Moreover, the adhesion of four fungal strains (Penicillium commune (PDLd”), Thielavia hyalocarpa, Penicillium commune (PDLd10), and Aspergillus niger) on untreated and treated cedar wood was examined theoretically and experimentally. For untreated wood, the experimental adhesion showed a positive relationship with the results obtained by the extended Derjaguin–Landau–Verwey–Overbeek (XDLVO) approach which found that all fungal strains could adhere strongly to the cedar wood material. In contrast, this relationship was not always positive after treatment. The Environmental Scanning Electron Microscopy (ESEM) has shown that P. commune (PDLd10) and A. niger were found unable to adhere to the wood surface after treatment with sunflower and rapeseed oils. In addition, the results showed that the four fungal strains’ adhesion was decreased with olive and linseed oils treatment except that of P. commune (PDLd10) treated with linseed oil.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Ranjumoni Konwar ◽  
Bharati Basumatary ◽  
Malamoni Dutta ◽  
Putul Mahanta

Background and Objectives. Fetal weight evaluation in utero is a significant component in obstetric practices. The present study aims to estimate the fetal weight (EFW) by evaluating two available formulas using ultrasound parameters and comparing them with actual birth weight (ABW) after delivery. The accuracy and efficacy of both EFW formulas in detecting intrauterine growth retardation (IUGR) and macrosomia were also compared in our local sample of the population. Methods. The cross-sectional study included 100 pregnant women aged 20–45 years from the Kamrup district admitted to Guwahati Medical College and Hospital, Guwahati, Assam. The data were analyzed using Microsoft Excel and SPSS version 16. The EFW at term was calculated using Shepard’s formula and Hadlock’s formula. Differences in means are compared using the one-way ANOVA or Kruskal–Wallis test and paired t-test. The accuracy of the two procedures was evaluated using mean absolute error (MAE) and mean absolute percentage error (MAPE). A p value<0.05 was considered significant. Results. The present study included 100 pregnant women aged 21–38 years with term or postterm pregnancies subjected to ultrasonographic evaluation within 72 hours of delivery. The mean (±s.d.) EFW by Shepard’s formula was 2716.05 (±332.38) g and Hadlock’s formula was 2740.44 (±353.23) g, respectively. For Hadlock’s formula, MAE ± s.d. was found to be higher (overall 84.59 ± 76.54) specifically in the weight category less than 2500 (106.42 ± 88.11) as compared to Shepard’s (overall MAE ± s.d = 79.86 ± 64.78, and among ABW < 2500 g, MAE ± s.d = 65.04 ± 61.02). The overall MAPE of Hadlock’s formula was 3.14% and that for Shepard’s formula was 2.91%, and the difference was not statistically significant. Both Shepard’s formula and Hadlock’s formula had a sensitivity of 92.85% in detecting IUGR, but Hadlock’s method had higher specificity (66%), higher PPV (86.67%), and higher NPV (80%). Conclusion. The ultrasonographic evaluation of fetal weight helps predict fetal birth weight precisely and can influence obstetric management decisions concerning timing and route of delivery, thus reducing perinatal morbidity and mortality.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Yahya Bachra ◽  
Ayoub Grouli ◽  
Fouad Damiri ◽  
Mohammed Talbi ◽  
Mohammed Berrada

Nowadays, current global environmental problems include measures to eliminate or reduce the negative impact of chemicals from petroleum sources and, therefore, the use of materials from natural resources is increasingly recommended. In this context, natural-based superabsorbent polymers derived from polypeptides and polysaccharides have undergone chemical and biochemical modifications to improve their ability to absorb and retain large amounts of liquids. In the present paper, a new process has been used to overcome the side effects of radical polymerization in the manufacture of conventional polyacrylate superabsorbents (SAPs). Tragacanth gum (TG) was selected to prepare a new superabsorbent material (CMTG-GA) based on carboxymethyl tragacanth (CMTG) crosslinked with glutaraldehyde (GA). The characterization of the polymer was carried out by FTIR, TGA, XRD, and SEM. The effect of the amount of crosslinking agent and the pH on the water absorption capacity was also examined. Subsequently, swelling studies were performed using free swelling capacity (FSC) and centrifuge retention capacity (CRC) techniques in distilled water, tap water, and saline solution. The results showed that the CRC of the new material is not less than 42.1 g/g, which was observed for a ratio of 20% by weight of GA to CMTG. Likewise, the maximum absorption results were 43.9 and 32.14 g/g, respectively, for FSC and CRC at pH 8.0. In addition, a comparison of the swelling capacities of the synthesized product with a commercial SAP extracted from a baby diaper, well known in the Moroccan market, showed that the performances were very similar.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Rania M. Salem ◽  
Chang Zhang ◽  
Laisheng Chou

Introducing therapeutic ions into pulp capping materials has been considered a new approach for enhancing regeneration of dental tissues. However, no studies have been reported on its dentinogenic effects on human dental pulp cells (HDPCs). This study was designed to investigate the effects of magnesium (Mg2+) on cell attachment efficiency, proliferation, differentiation, and mineralization of HDPCs. HDPCs were cultured with 0.5 mM, 1 mM, 2 mM, 4 mM, and 8 mM concentrations of supplemental Mg2+ and 0 mM (control). Cell attachment was measured at 4, 8, 12, 16, and 20 hours. Cell proliferation rate was evaluated at 3, 7, 10, 14, and 21 days. Crystal violet staining was used to determine cell attachment and proliferation rate. Alkaline phosphatase (ALP) activity was assessed using the fluorometric assay at 7, 10, and 14 days. Mineralization of cultures was measured by Alizarin red staining. Statistical analysis was done using multiway analysis of variance (multiway ANOVA) with Wilks’ lambda test. Higher cell attachment was shown with 0.5 mM and 1 mM at 16 hours compared to control ( P < 0.0001 ). Cells with 0.5 mM and 1 mM supplemental Mg2+ showed significantly higher proliferation rates than control at 7, 10, 14, and 21 days ( P < 0.0001 ). However, cell proliferation rates decreased significantly with 4 mM and 8 mM supplemental Mg2+ at 14 and 21 days ( P < 0.0001 ). Significantly higher levels of ALP activity and mineralization were observed in 0.5 mM, 1 mM, and 2 mM supplemental Mg2+ at 10 and 14 days ( P < 0.0001 ). However, 8 mM supplemental Mg2+ showed lower ALP activity compared to control at 14 days ( P < 0.0001 ), while 4 mM and 8 mM supplemental Mg2+showed less mineralization compared to control ( P < 0.0001 ). The study indicated that the optimal (0.5–2 mM) supplemental Mg2+ concentrations significantly upregulated HDPCs by enhancing cell attachment, proliferation rate, ALP activity, and mineralization. Magnesium-containing biomaterials could be considered for a future novel dental pulp-capping additive in regenerative endodontics.


2021 ◽  
Vol 2021 ◽  
pp. 1-12
Author(s):  
Muhammed Seid Anbesaw

Bromelain is a proteolytic enzyme, which is predominately found in all parts of a pineapple plant (Ananas comosus). It has immense application in the pharmaceutical industry as well as in food, cosmetic, and leather industries. However, bromelain from pineapple fruit peels is a less explored source for making valuable products. Therefore, the objective of this study was to characterize and investigate the potential application of bromelain enzyme extracted from pineapple juice processing waste peels in gelatin hydrolysis and removal of silver from X-ray films. Extraction of bromelain was performed with a 1 : 2 ratio (w/v) of the extraction mix, pineapple fruit peel, in phosphate buffer (pH = 7.0). The activity of a crude enzyme was 7.2 U/ml, and it was active in a broad range of pH (2.5–12) and temperature (25–85°C) without losing its activity. This implies that the enzyme is heat tolerant. The optimum temperature and pH of the enzyme were recorded at 70°C and pH 7.0, respectively. At optimum conditions (70°C and pH 7.0), complete hydrolysis of the gelatin layer from X-ray film was observed at 30 and 34 seconds, respectively. The enzyme was repeatedly used more than 50 times without significant loss of its activity. Using a minimum concentration of bromelain (3 ml = 21.6 U) along with phosphate buffer (37 ml), it is possible completely to remove gelatin within 210 seconds. The properties of the enzyme showed that it has promising potential industrial applications for repeated utilization of the enzyme in both silver recovery and recycling of the X-ray film base.


2021 ◽  
Vol 2021 ◽  
pp. 1-13
Author(s):  
Monica Mesa ◽  
Natalia Y. Becerra

Multifunctional and biocompatible hydrogels are on the focus of wound healing treatments. Protein and polysaccharides silica hybrids are interesting wound dressing alternatives. The objective of this review is to answer questions such as why silica for wound dressings reinforcement? What are the roles and contributions of silane precursors and silica on the functional properties of hydrogel wound dressings? The effects of tailoring the porous, morphological, and chemical characteristics of synthetic silicas on the bioactivity of hybrid wound dressings hydrogels are explored in the first part of the review. This is followed by a commented review of the mechanisms of silica/protein and silica/polysaccharide interactions and their impact on the barrier, scaffold, and delivery matrix functions of the derived hydrogels. Such information has important consequences for wound healing and paves the way to multidisciplinary researches on the production, processing, and biomedical application of this kind of hybrid materials.


2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Fernando Arias Alvarado ◽  
Maira Rivero Iriarte ◽  
Freddy Jordan Mariño ◽  
Sara Quijano-Guauque ◽  
León D. Pérez ◽  
...  

Context. The wettability of the chemically modified dentin substrate is a condition that intervenes in dentin-vascular and cellular interaction across regenerative endodontics. Aims. To compare the effect of CS and CSnp on the wettability in root dentine with other irrigation protocols with an experimental in vitro model prior regenerative endodontics. Methods and Material. An in vitro experimental study that included eighty hemisected human root distributed into 8 groups: G1- distilled water; G2- 1% NaOCl/17% EDTA; G3- hypochlorous acid 0.025% HOCl, G4- 1% NaOCl/0.025% HOCl/17% EDTA, G5- 0.2 g/100 mL CS, G6- 1% NaOCl/0.2 g/100 mL CS, G7- CSnp, and G8- 1% NaOCl/CSnp. The wettability analysis calculated the contact angle (θ) between a drop of a blood-like and root dentinal surface; topographic characterization with scanning electron microscopy (SEM) quantified the diameter and number of tubules per area; spectroscopy infrared analyses (IR-S) identified chemical changes in the inorganic (phosphate/carbonate) and organic phase (amide/methyl). Statistical analysis: a linear mixed model, Kruskal–Wallis, and Holm–Bonferroni correction ( P  < 0.05) were used. Results. Significantly higher wettability for G2 (27.1 ( P  = 0.0001)) was found. A mean value of 67°±°for experimental groups ( P  = 0.07) was found, and we did not identify differences between them. The SEM identified greater tubular opening and erosion for G4 and greater dentinal permeability per area for NaOCl/CS. IR-S identified dentinal organic integrity with NaOCl-CS/CSnp compared to organic reduction promoted for NaOCl/EDTA. Conclusions. This in vitro dentin determined an indirect association between the wettability and organic contents. The oxidative effect of NaOCl could be neutralized by CS-CSnp, and consequently, the wettability of the substrate decreases.


2021 ◽  
Vol 2021 ◽  
pp. 1-7
Author(s):  
Hamza Abu Owida ◽  
Jamal I. Al-Nabulsi ◽  
Nidal M. Turab ◽  
Feras Alnaimat ◽  
Hana Rababah ◽  
...  

Implantable devices have successfully proven their reliability and efficiency in the medical field due to their immense support in a variety of aspects concerning the monitoring of patients and treatment in many ways. Moreover, they assist the medical field in disease diagnosis and prevention. However, the devices’ power sources rely on batteries, and with this reliance, comes certain complications. For example, their depletion may lead to surgical interference or leakage into the human body. Implicit studies have found ways to reduce the battery size or in some cases to eliminate its use entirely; these studies suggest the use of biocompatible harvesters that can support the device consumption by generating power. Harvesting mechanisms can be executed using a variety of biocompatible materials, namely, piezoelectric and triboelectric nanogenerators, biofuel cells, and environmental sources. As with all methods for implementing biocompatible harvesters, some of them are low in terms of power consumption and some are dependent on the device and the place of implantation. In this review, we discuss the application of harvesters into implantable devices and evaluate the different materials and methods and examine how new and improved circuits will help in assisting the generators to sustain the function of medical devices.


2021 ◽  
Vol 2021 ◽  
pp. 1-11
Author(s):  
Md Mahmudul Hasan ◽  
Md Forhad Uddin ◽  
Nayera Zabin ◽  
Md Salman Shakil ◽  
Morshed Alam ◽  
...  

Thermal burns are a major cause of death and suffering around the globe. They can cause debilitating, life-altering injuries as well as lead to significant psychological and financial consequences. Several research works have been conducted in attempt to find a wound healing therapy that is successful. At present, hydrogels have been widely used in cutting-edge research for this purpose because they have suitable properties. This study aimed to see how therapy with chitosan-polyethylene glycol (Ch-Peg) based hydrogels affected the healing of burn wounds in rats. With the concern of public health, xanthan gum (X), boric acid (B), gelatin (Ge), polyethylene glycol (Peg), chitosan (Ch), glutaraldehyde (G), and HPLC-grade water were prepared using X : Ge : G, X : Ge : Peg : G, X : Ge : Ch : G, X : Ge : Peg : Ch : G, X : Ge : B : Ch : G, X : Ge : B : Peg : G, and X : Ge : B : Peg : Ch : G. The produced composite hydrogels were examined for swelling ability, biodegradability, rheological characteristics, and porosity. The 3D structure of the hydrogel was revealed by scanning electron microscopy (SEM). After that, the structural characterization technique named Fourier-transform infrared spectroscopy (FTIR) was used to describe the composites (SEM). Lastly, in a rat skin wound model, the efficacy of the produced hydrogels was studied. Swelling ability, biodegradability, rheological properties, and porosity were all demonstrated in composite hydrogels that contained over 90% water. Hydrogels with good polymeric networks and porosity were observed using SEM. The existence of bound water and free, intra- and intermolecule hydrogen-linked OH and NH in the hydrogels was confirmed using FTIR. In a secondary burned rat model, all hydrogels showed significant wound healing effectiveness when compared to controls. When compared to other composite hydrogels, wounds treated with X : Ge : Peg : Ch : G, X : Ge : B : Peg : G, and X : Ge : B : Peg : Ch:G recovered faster after 28 days. In conclusion, this research suggests that X : Ge : Peg : Ch : G, X : Ge : B : Peg : G, and X : Ge : B : Peg : Ch : G could be used to treat skin injuries in the clinic.


2021 ◽  
Vol 2021 ◽  
pp. 1-9
Author(s):  
Ardavan Parhizkar ◽  
Saeed Asgary

Vital pulp therapy (VPT) is deliberated as an ultraconservative/minimally invasive approach for the conservation of vital pulpal tissues, preservation of dental structure, and maintenance of tooth function in the oral cavity. In VPT, following the exposure of the dental pulp, the environment is prepared for the possible healing and probable refunctionalisation of pulpal connective tissue. However, to succeed in VPT, specific biomaterials are used to cover and/or dress the exposed pulp, lower the inflammation, heal the dental pulp, provoke the remaining odontoblastic cells, and induce the formation of a hard tissue, i.e., the dentinal bridge. It can be assumed that if the employed biomaterial is transferred to the target site using a specially designed micro-/nanosized local drug delivery system (LDDS), the biomaterial would be placed in closer proximity to the connective tissue, may be released in a controlled and sustained pattern, could properly conserve the remaining dental pulp and might appropriately enhance hard-tissue formation. Furthermore, the loaded LDDS could help VPT modalities to be more ultraconservative and may minimise the manipulation of the tooth structure as well as pulpal tissue, which could, in turn, result in better VPT outcomes.


Sign in / Sign up

Export Citation Format

Share Document