scholarly journals Scattering Study of Fermions due to Double Dirac Delta Potential in Quaternionic Relativistic Quantum Mechanics

2018 ◽  
Vol 2018 ◽  
pp. 1-7 ◽  
Author(s):  
Hassan Hassanabadi ◽  
Hadi Sobhani ◽  
Won Sang Chung

We have studied the scattering problem of relativistic fermions from a quaternionic double Dirac delta potential. We have used Dirac equation in the presence of the scalar and vector potentials in the quaternionic formalism of relativistic quantum mechanics to study the problem. The wave functions of different regions have been derived. Then, using the reflection coefficient, transmission coefficient, and the continuity equation, the scattering problem has been investigated in detail. It has been shown that we have faced some fluctuations in the reflection and transmission coefficients.

2016 ◽  
Vol 94 (3) ◽  
pp. 262-266 ◽  
Author(s):  
Hadi Sobhani ◽  
Hasan Hassanabadi

In this paper, the Schrödinger equation for quaternionic quantum mechanics with a Dirac delta potential has been investigated. The derivative discontinuity condition for the quaternionic wave function has been derived and the boundary conditions for the quaternionic wave function have been applied. Probability current densities for different regions of the problem have been determined along with reflection and transmission coefficients.


2017 ◽  
Vol 2017 ◽  
pp. 1-9 ◽  
Author(s):  
Hadi Sobhani ◽  
Won Sang Chung ◽  
Hassan Hassanabadi

In this article, after introducing a kind ofq-deformation in quantum mechanics, first,q-deformed form of Dirac equation in relativistic quantum mechanics is derived. Then, three important scattering problems in physics are studied. All results have satisfied what we had expected before. Furthermore, effects of all parameters in the problems on the reflection and transmission coefficients are calculated and shown graphically.


1984 ◽  
Vol 14 (9) ◽  
pp. 883-906 ◽  
Author(s):  
D. P. Greenwood ◽  
E. Prugovečki

1991 ◽  
Vol 253 ◽  
Author(s):  
B. L. Gyorffy

The symmetry properties of the Dirac equation, which describes electrons in relativistic quantum mechanics, is rather different from that of the corresponding Schr6dinger equation. Consequently, even when the velocity of light, c, is much larger than the velocity of an electron Vk, with wave vector, k, relativistic effects may be important. For instance, while the exchange interaction is isotropic in non-relativistic quantum mechanics the coupling between spin and orbital degrees of freedom in relativistic quantum mechanics implies that the band structure of a spin polarized metal depends on the orientation of its magnetization with respect to the crystal axis. As a consequence there is a finite set of degenerate directions for which the total energy of the electrons is an absolute minimum. Evidently, the above effect is the principle mechanism of the magneto crystalline anisotropy [1]. The following session will focus on this and other qualitatively new relativistic effects, such as dichroism at x-ray frequencies [2] or Fano effects in photo-emission from non-polarized solids [3].


Sign in / Sign up

Export Citation Format

Share Document