crystalline anisotropy
Recently Published Documents


TOTAL DOCUMENTS

225
(FIVE YEARS 34)

H-INDEX

22
(FIVE YEARS 3)

2022 ◽  
Vol 9 ◽  
Author(s):  
Yuxuan Xiao ◽  
Hailong Wang ◽  
Eric E. Fullerton

We report on the spin Hall effect in epitaxial Pt films with well-defined crystalline (200), (220), and (111) orientations and smooth surfaces. The magnitude of the spin Hall effect has been determined by spin–torque ferromagnetic resonance measurements on epitaxial Pt/Py heterostructures. We observed a 54% enhancement of the charge-to-spin conversion efficiency of the epitaxial Pt when currents are applied along the in-plane <002> direction. Temperature-dependent harmonic measurements on epitaxial Pt/Co/Ni heterostructures compared to a polycrystalline Pt/Co/Ni suggest the extrinsic mechanism underlying spin Hall effect in epitaxial Pt. Our work contributes to the development of energy-efficient spintronic devices by engineering the crystalline anisotropy of non-magnetic metals.


Author(s):  
HADEY MOHAMAD

A two-sublattice decorated Blume-Capel ferrimagnet has been investigated using the mean field theory. Interesting behaviors of long-range order are obtained depending on particular magnitudes of magnetocrystalline anisotropies for both sublattices sites. Distinguishable features have been discovered in two-dimensional decorated lattice consisting of spin-5/2 and decorating spin-7/2 ions on the bonds. It is found the present system shows two ferrimagnetic compensation temperatures. However, one compensation temperature for different or fixed values of decorated magnetic anisotropies with the values of J1=-0.5 , J2=-1.0 , or with J1=-1.0 , J2=-0.5, has been induced, respectively. The magnetization behavior in the (M,DB/IJ2I) space has not already been considered showing the crystalline anisotropy dependence of total magnetization remanences. Besides, the variations of net magnetizations versus the decorated crystal fields, i.e., in the(M,DA/IJ2I) space, have been done, with J1=-0.5, J2=-1.0 , for various values of T=2.0, 2.5,3.0 , respectively.


Author(s):  
Oscar Lee ◽  
Jan Sahliger ◽  
Aisha Aqeel ◽  
Safe Khan ◽  
Shinichiro Seki ◽  
...  

Abstract Recently, it has been shown that the chiral magnetic insulator Cu2OSeO3 hosts skyrmions in two separated pockets in temperature and magnetic field phase space. It has also been shown that the predominant stabilization mechanism for the low-temperature skyrmions (LTS) phase is the crystalline anisotropy in contrast to temperature fluctuations, which stabilize the well established high-temperature skyrmion (HTS) lattice. Here, we report on the gigahertz dynamics in the LTS phase in Cu2OSeO3. The LTS phase is populated via a field cycling protocol with the static magnetic field applied parallel to the h100i crystalline direction of plate and cuboid-shaped bulk crystals. By analyzing temperature-dependent broadband spectroscopy data, clear evidence of low-temperature skyrmion excitations with clockwise (CW), counterclockwise (CCW), and breathing mode (BR) character at temperatures below T = 40 K are shown. We find that the modes’ intensities can be tuned with the number of field-cycles below the saturation field, and by tracking the resonance frequencies, the LTS phase diagram can be established. From our experiments, we conclude that the LTS phase is well separated from the high-temperature phase. Furthermore, by monitoring the strength of the observed hybridization between a dark CW mode and the BR as a function of temperature for the two differently shaped crystals, we unambiguously conclude that the magnetocrystalline anisotropy governs the hybridization.


Author(s):  
Xiaocui Ma ◽  
Rui Xu ◽  
Yang Mei ◽  
Leiying Ying ◽  
Hao Long ◽  
...  

Abstract In this work, crystalline anisotropy of heteroepitaxial (-201) β-Ga2O3 films on c-plane sapphire substrate and GaN template was investigated by X-ray diffraction. The (-201) ω-scan broadening of β-Ga2O3 on GaN exhibited six-fold rotational symmetric anisotropy along different azimuths, with maxima along [010] and minima along [102] direction, respectively. However, in case of β-Ga2O3 on sapphire, it was nearly isotropic. Smaller lattice mismatch between β-Ga2O3 and GaN were taken into account to explain the discrepancy, which also explained the better quality of β-Ga2O3 deposited on GaN. Our results presented a new viewpoint to the crystallographic anisotropy of (-201 ) β-Ga2O3 thin films.


2021 ◽  
Vol 54 (4) ◽  
Author(s):  
Xiaocui Ma ◽  
Rui Xu ◽  
Jianfang Xu ◽  
Leiying Ying ◽  
Yang Mei ◽  
...  

The anisotropy of X-ray diffraction scanning of (201) β-Ga2O3 bulk material has been investigated. Symmetric rocking curves (RCs) exhibit distinctly different broadening along different azimuths, with a maximum along [102] and a minimum along a direction rotated by 30° from [010]. Williamson–Hall analysis was applied to study possible factors causing the broadening in these RCs, including instrumental factors, mosaic tilt and coherent scattering. It was found that the RC broadening is determined by both isotropic mosaic tilt and anisotropy in the length over which the crystal structure is not disrupted by limiting factors such as grain boundaries or stacking faults, which we term the `lateral limited size'. In this case, the lateral limited size is governed by {200} stacking faults along the [102] direction and grain boundaries along the [010] direction. The result presents a new anisotropy characteristic of (201) β-Ga2O3.


2021 ◽  
Vol 16 (1) ◽  
Author(s):  
Y. Hu ◽  
S. Jin ◽  
Z. F. Luo ◽  
H. H. Zeng ◽  
J. H. Wang ◽  
...  

AbstractA pressing need in low energy spintronics is two-dimensional (2D) ferromagnets with Curie temperature above the liquid-nitrogen temperature (77 K), and sizeable magnetic anisotropy. We studied Mn3Br8 monolayer which is obtained via inducing Mn vacancy at 1/4 population in MnBr2 monolayer. Such defective configuration is designed to change the coordination structure of the Mn-d5 and achieve ferromagnetism with sizeable magnetic anisotropy energy (MAE). Our calculations show that Mn3Br8 monolayer is a ferromagnetic (FM) half-metal with Curie temperature of 130 K, large MAE of − 2.33 meV per formula unit, and atomic magnetic moment of 13/3μB for the Mn atom. Additionally, Mn3Br8 monolayer maintains to be FM under small biaxial strain, whose Curie temperature under 5% compressive strain is 160 K. Additionally, both biaxial strain and carrier doping make the MAE increases, which mainly contributed by the magneto-crystalline anisotropy energy (MCE). Our designed defective structure of MnBr2 monolayer provides a simple but effective way to achieve ferromagnetism with large MAE in 2D materials.


2021 ◽  
Vol 11 (8) ◽  
pp. 3600
Author(s):  
Martin Pitoňák ◽  
Miroslav Neslušan ◽  
Peter Minárik ◽  
Jiří Čapek ◽  
Katarína Zgútová ◽  
...  

This study investigates alterations in magnetic anisotropy and the marked asymmetry in Barkhausen noise (MBN) signals after the uniaxial plastic straining of steel S235 obtained from a shipyard and used as standard structural steel in shipbuilding. It was found that the initial easy axis of magnetisation in the direction of previous rolling, and also in the direction of loading, becomes the hard axis of magnetisation as soon as the plastic strain attains the critical threshold. This behaviour is due to the preferential matrix orientation and the corresponding realignment of the magneto-crystalline anisotropy. Apart from the angular dependence of MBN, the asymmetry in the consecutive MBN bursts at the lower plastic strains is also analysed and explained as a result of magnetic coupling between the grains plastically strained and those unaffected by the tensile test. It was found that, by increasing the degree of plastic strain, the marked asymmetry in MBN tends to vanish. Moreover, the asymmetry in MBN bursts occurs in the direction of uniaxial tension and disappears in the perpendicular direction. Besides the MBN technique, XRD and EBSD techniques were also employed in order to provide a deeper insight into the investigated aspects.


2021 ◽  
pp. 55-59
Author(s):  
E.V. Karaseva ◽  
S.V. Malykhin ◽  
A.V. Mats ◽  
V.A. Mats ◽  
E.S. Savchuk ◽  
...  

The effect of electron irradiation on the evolution of the structure and creep of the samples Zr1Nb alloy of industrial production and samples obtained by the IPD method were studied. It was shown that irradiation with electrons with a dose not exceeding D = 5∙1019 сm–2 does not affect the plastic deformation mechanisms of the industrial Zr1Nb alloy, as a result of which its high thermomechanical and radiation stability is maintained. Irradiation by electrons with an energy of E = 10 MeV and doses of D = 6∙1017 and 5∙1019 сm–2 does not change the character of the deformation nanostructure of the Zr1Nb alloy, but initiates return processes in grain boundaries and boundary regions and cause the changes in crystalline anisotropy of GPU lattice, which leads to softening of the material during creep at 380 °C.


2021 ◽  
Vol 4 (1) ◽  
Author(s):  
Soonbeom Seo ◽  
Satoru Hayami ◽  
Ying Su ◽  
Sean M. Thomas ◽  
Filip Ronning ◽  
...  

AbstractUnusual magnetic textures can be stabilized in f-electron materials due to the interplay between competing magnetic interactions, complex Fermi surfaces, and crystalline anisotropy. Here we investigate CeAuSb2, an f-electron incommensurate antiferromagnet hosting both single-Q and double-Q spin textures as a function of magnetic fields (H) applied along the c axis. Experimentally, we map out the field-temperature phase diagram via electrical resistivity and thermal expansion measurements. Supported by calculations of a Kondo lattice model, we attribute the puzzling magnetoresistance enhancement in the double-Q phase to the localization of the electronic wave functions caused by the incommensurate magnetic texture.


Sign in / Sign up

Export Citation Format

Share Document