scholarly journals Parameter Estimation in Ordinary Differential Equations Modeling via Particle Swarm Optimization

2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
Devin Akman ◽  
Olcay Akman ◽  
Elsa Schaefer

Researchers using ordinary differential equations to model phenomena face two main challenges among others: implementing the appropriate model and optimizing the parameters of the selected model. The latter often proves difficult or computationally expensive. Here, we implement Particle Swarm Optimization, which draws inspiration from the optimizing behavior of insect swarms in nature, as it is a simple and efficient method for fitting models to data. We demonstrate its efficacy by showing that it outstrips evolutionary computing methods previously used to analyze an epidemic model.


2012 ◽  
Vol 2012 ◽  
pp. 1-12 ◽  
Author(s):  
An Liu ◽  
Erwie Zahara ◽  
Ming-Ta Yang

Ordinary differential equations usefully describe the behavior of a wide range of dynamic physical systems. The particle swarm optimization (PSO) method has been considered an effective tool for solving the engineering optimization problems for ordinary differential equations. This paper proposes a modified hybrid Nelder-Mead simplex search and particle swarm optimization (M-NM-PSO) method for solving parameter estimation problems. The M-NM-PSO method improves the efficiency of the PSO method and the conventional NM-PSO method by rapid convergence and better objective function value. Studies are made for three well-known cases, and the solutions of the M-NM-PSO method are compared with those by other methods published in the literature. The results demonstrate that the proposed M-NM-PSO method yields better estimation results than those obtained by the genetic algorithm, the modified genetic algorithm (real-coded GA (RCGA)), the conventional particle swarm optimization (PSO) method, and the conventional NM-PSO method.



2012 ◽  
Vol 510 ◽  
pp. 472-477
Author(s):  
Jian Hui Zhou ◽  
Shu Zhong Zhao ◽  
Li Xi Yue ◽  
Yan Nan Lu ◽  
Xin Yi Si

In fluid mechanics, how to solve multiple solutions in ordinary differential equations is always a concerned and difficult problem. A particle swarm optimization algorithm combining with the direct search method (DSPO) is proposed for solving the parameter estimation problems of the multiple solutions in fluid mechanics. This algorithm has improved greatly in precision and the success rate. In this paper, multiple solutions can be found through changing accuracy and search coverage and multi-iterations of computer. Parameter estimation problems of the multiple solutions of ordinary differential equations are calculated, and the result has great accuracy and this method is practical.



2019 ◽  
Vol 2019 ◽  
pp. 1-11
Author(s):  
Xian-Ci Zhong ◽  
Jia-Ye Chen ◽  
Zhou-Yang Fan

The Euler method is a typical one for numerically solving initial value problems of ordinary differential equations. Particle swarm optimization (PSO) is an efficient algorithm for obtaining the optimal solution of a nonlinear optimization problem. In this study, a PSO-based Euler-type method is proposed to solve the initial value problem of ordinary differential equations. In the typical Euler method, the equidistant grid points are always used to obtain the approximate solution. The existing shortcoming is that when the iteration number is increasing, the approximate solution could be greatly away from the exact one. Here, it is considered that the distribution of the grid nodes could affect the approximate solution of differential equations on the discrete points. The adopted grid points are assumed to be free and nonequidistant. An optimization problem is constructed and solved by particle swarm optimization (PSO) to determine the distribution of grid points. Through numerical computations, some comparisons are offered to reveal that the proposed method has great advantages and can overcome the existing shortcoming of the typical Euler formulae.







2016 ◽  
Vol 52 (1) ◽  
pp. 30-39
Author(s):  
Kosei NOJIRI ◽  
Takuya KIYOKAWA ◽  
Hirohumi OHTSUKA ◽  
Yoji OKAYAMA


Sign in / Sign up

Export Citation Format

Share Document