scholarly journals A Semantic Community Detection Algorithm Based on Quantizing Progress

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Xu Han ◽  
Deyun Chen ◽  
Hailu Yang

The semantic social network is a kind of network that contains enormous nodes and complex semantic information, and the traditional community detection algorithms could not give the ideal cogent communities instead. To solve the issue of detecting semantic social network, we present a clustering community detection algorithm based on the PSO-LDA model. As the semantic model is LDA model, we use the Gibbs sampling method that can make quantitative parameters map from semantic information to semantic space. Then, we present a PSO strategy with the semantic relation to solve the overlapping community detection. Finally, we establish semantic modularity (SimQ) for evaluating the detected semantic communities. The validity and feasibility of the PSO-LDA model and the semantic modularity are verified by experimental analysis.

2021 ◽  
Vol 11 (1) ◽  
Author(s):  
László Hajdu ◽  
Miklós Krész ◽  
András Bóta

AbstractBoth community detection and influence maximization are well-researched fields of network science. Here, we investigate how several popular community detection algorithms can be used as part of a heuristic approach to influence maximization. The heuristic is based on the community value, a node-based metric defined on the outputs of overlapping community detection algorithms. This metric is used to select nodes as high influence candidates for expanding the set of influential nodes. Our aim in this paper is twofold. First, we evaluate the performance of eight frequently used overlapping community detection algorithms on this specific task to show how much improvement can be gained compared to the originally proposed method of Kempe et al. Second, selecting the community detection algorithm(s) with the best performance, we propose a variant of the influence maximization heuristic with significantly reduced runtime, at the cost of slightly reduced quality of the output. We use both artificial benchmarks and real-life networks to evaluate the performance of our approach.


2021 ◽  
Vol 2021 ◽  
pp. 1-14
Author(s):  
Junjie Jia ◽  
Pengtao Liu ◽  
Xiaojin Du ◽  
Yuchao Zhang

Aiming at the problem of the lack of user social attribute characteristics in the process of dividing overlapping communities in multilayer social networks, in this paper, we propose a multilayer social network overlapping community detection algorithm based on trust relationship. By combining structural trust and social attribute trust, we transform a complex multilayer social network into a single-layer trust network. We obtain the community structure according to the community discovery algorithm based on trust value and merge communities with higher overlap. The experimental comparison and analysis are carried out on the synthetic network and the real network, respectively. The experimental results show that the proposed algorithm has higher harmonic mean and modularity than other algorithms of the same type.


2021 ◽  
Vol 2021 ◽  
pp. 1-17
Author(s):  
Ping Wang ◽  
Yonghong Huang ◽  
Fei Tang ◽  
Hongtao Liu ◽  
Yangyang Lu

Detecting the community structure and predicting the change of community structure is an important research topic in social network research. Focusing on the importance of nodes and the importance of their neighbors and the adjacency information, this article proposes a new evaluation method of node importance. The proposed overlapping community detection algorithm (ILE) uses the random walk to select the initial community and adopts the adaptive function to expand the community. It finally optimizes the community to obtain the overlapping community. For the overlapping communities, this article analyzes the evolution of networks at different times according to the stability and differences of social networks. Seven common community evolution events are obtained. The experimental results show that our algorithm is feasible and capable of discovering overlapping communities in complex social network efficiently.


Entropy ◽  
2021 ◽  
Vol 23 (6) ◽  
pp. 680
Author(s):  
Hanyang Lin ◽  
Yongzhao Zhan ◽  
Zizheng Zhao ◽  
Yuzhong Chen ◽  
Chen Dong

There is a wealth of information in real-world social networks. In addition to the topology information, the vertices or edges of a social network often have attributes, with many of the overlapping vertices belonging to several communities simultaneously. It is challenging to fully utilize the additional attribute information to detect overlapping communities. In this paper, we first propose an overlapping community detection algorithm based on an augmented attribute graph. An improved weight adjustment strategy for attributes is embedded in the algorithm to help detect overlapping communities more accurately. Second, we enhance the algorithm to automatically determine the number of communities by a node-density-based fuzzy k-medoids process. Extensive experiments on both synthetic and real-world datasets demonstrate that the proposed algorithms can effectively detect overlapping communities with fewer parameters compared to the baseline methods.


Author(s):  
Nicole Belinda Dillen ◽  
Aruna Chakraborty

One of the most important aspects of social network analysis is community detection, which is used to categorize related individuals in a social network into groups or communities. The approach is quite similar to graph partitioning, and in fact, most detection algorithms rely on concepts from graph theory and sociology. The aim of this chapter is to aid a novice in the field of community detection by providing a wider perspective on some of the different detection algorithms available, including the more recent developments in this field. Five popular algorithms have been studied and explained, and a recent novel approach that was proposed by the authors has also been included. The chapter concludes by highlighting areas suitable for further research, specifically targeting overlapping community detection algorithms.


2019 ◽  
Vol 33 (30) ◽  
pp. 1992001
Author(s):  
Guishen Wang ◽  
Yuanwei Wang ◽  
Kaitai Wang ◽  
Zhihua Liu ◽  
Lijuan Zhang ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document