scholarly journals Security Measure for Image Steganography Based on High Dimensional KL Divergence

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Haitao Song ◽  
Guangming Tang ◽  
Yifeng Sun ◽  
Zhanzhan Gao

Steganographic security is the research focus of steganography. Current steganography research emphasizes on the design of steganography algorithms, but the theoretical research about steganographic security measure is relatively lagging. This paper proposes a feasible image steganographic security measure based on high dimensional KL divergence. It is proved that steganographic security measure of higher dimensional KL divergence is more accurate. The correlation between neighborhood pixels is analyzed from the principle in imaging process and content characteristics, and it is concluded that 9-dimensional probability statistics are effective enough to be used as steganographic security measure. Then in order to reduce the computational complexity of high dimensional probability statistics and improve the feasibility of the security measure method, a security measure dimension reduction scheme is proposed by applying gradient to describe image textures. Experiments show that the proposed steganographic security measure method is feasible and effective and more accurate than measure method based on 4-dimensional probability statistics.

2006 ◽  
Vol 16 (09) ◽  
pp. 2649-2658
Author(s):  
RECAI KILIÇ

In order to operate in higher dimensional form of autonomous and nonautonomous Chua's circuits keeping their original chaotic behaviors, we have experimentally modified VOA (Voltage Mode Operational Amplifier)-based autonomous Chua's circuit and nonautonomous MLC [Murali–Lakshmanan–Chua] circuit by using a simple experimental method. After introducing this experimental method, we will present PSpice simulation and experimental results of modified high dimensional autonomous and nonautonomous Chua's circuits.


2013 ◽  
Vol 303-306 ◽  
pp. 1101-1104 ◽  
Author(s):  
Yong De Hu ◽  
Jing Chang Pan ◽  
Xin Tan

Kernel entropy component analysis (KECA) reveals the original data’s structure by kernel matrix. This structure is related to the Renyi entropy of the data. KECA maintains the invariance of the original data’s structure by keeping the data’s Renyi entropy unchanged. This paper described the original data by several components on the purpose of dimension reduction. Then the KECA was applied in celestial spectra reduction and was compared with Principal Component Analysis (PCA) and Kernel Principal Component Analysis (KPCA) by experiments. Experimental results show that the KECA is a good method in high-dimensional data reduction.


Sign in / Sign up

Export Citation Format

Share Document