scholarly journals Steady-State Analysis and Output Voltage Minimization Based Control Strategy for Electric Springs in the Smart Grid with Multiple Renewable Energy Sources

Complexity ◽  
2019 ◽  
Vol 2019 ◽  
pp. 1-12 ◽  
Author(s):  
Yun Zou ◽  
Michael Z. Q. Chen ◽  
Yinlong Hu ◽  
Yun Zou

This paper presents a general steady-state analysis and proposes a minimal compensating voltage (MCV) control scheme for the second generation of electric springs (ES-2) in the power system with substantial penetration of intermittent renewable energy sources. For the steady-state analysis, the relationship among the fluctuating part of the supply voltage, the voltage at the point of common-coupling (PCC), and the compensating voltage provided by ES-2 is derived, which implies that the phase angle related to the PCC voltage can be used as a degree of freedom for the control design to obtain a minimal compensating voltage in a given system. Such a fact is utilized in the control design to obtain the reference of PCC voltage by tuning the above-mentioned phase angle. Once the phase angle of the PCC voltage is chosen, the maximal compensating voltage can be estimated based on the fluctuating part of the supply voltage which can be estimated a priori. Such a fact can be used to design suitable electric springs with appropriate compensating capacity to avoid overcapacity. Numerical simulations are conducted to verify the effectiveness of the steady-state analysis and the proposed control scheme for ES-2.

Author(s):  
Bisma Imtiaz ◽  
Imran Zafar ◽  
Cui Yuanhui

Due to the rapid increase in energy demand with depleting conventional sources, the world’s interest is moving towards renewable energy sources. Microgrid provides easy and reliable integration of distributed generation (DG) units based on renewable energy sources to the grid. The DG’s are usually integrated to microgrid through inverters. For a reliable operation of microgrid, it must have to operate in grid connected as well as isolated mode. Due to sudden mode change, performance of the DG inverter system will be compromised. Design and simulation of an optimized microgrid model in MATLAB/Simulink is presented in this work. The goal of the designed model is to integrate the inverter-interfaced DG’s to the microgrid in an efficient manner. The IEEE 13 bus test feeder has been converted to a microgrid by integration of DG’s including diesel engine generator, photovoltaic (PV) block and battery. The main feature of the designed MG model is its optimization in both operated modes to ensure the high reliability. For reliable interconnection of designed MG model to the power grid, a control scheme for DG inverter system based on PI controllers and DQ-PLL (phase-locked loop) has been designed. This designed scheme provides constant voltage in isolated mode and constant currents in grid connected mode. For power quality improvement, the regulation of harmonic current insertion has been performed using LCL filter. The performance of the designed MG model has been evaluated from the simulation results in MATLAB/ Simulink.


Author(s):  
Meriem Mahboubi ◽  
Abderrahmane Ouadi

Renewable energy is one of the most abundant energies in our planet. In order to satisfy the world demand of electrical energy, solar and wind energy may be used. Identical to all other types of power generation plants, the integration of these renewable energy sources in smart power grid has an impact on its operation. Thus, when the electrical power is injected into the power grid by these energy sources, the system electrical parameters must be well monitored for synchronization purpose. This can be accomplished with the aid of synchro-phasors measurement units. The phase angle of the utility is a critical parameter for the operation of power devices feeding power into the grid such as PV and wind energy inverters. There are many techniques to obtain the grid phase angle such as the zero-crossing detection and the orthogonal phase locked loop. This research work discusses the use of PMUs (Phasor Measurement Unit) for providing this important parameter to system synchronization in the case of high penetration of solar or wind energy in the power grid.


DYNA ◽  
2015 ◽  
Vol 82 (192) ◽  
pp. 85-93 ◽  
Author(s):  
Luis Ernesto Luna Ramírez ◽  
Horacio Torres Sánchez ◽  
Fabio Andrés Pavas Martínez

<p>This paper proposes a methodology to model and analyze the security scheme required by a microgrid that considers the participation of renewable energy sources. This security scheme is represented by an up and down spinning reserve, which allows to drive the system frequency to a steady state after the occurrence of events associated not only to forecast errors in the electricity demand (as traditional schemes do), but also to forecast errors in the power availability of the intermittent energy sources. The proposed methodology was implemented on a real microgrid that considers the interconnection of a photovoltaic generator. From this, it was concluded that the security scheme designed for the microgrid allowed to ensure efficiently the relation between generation and demand, at each study hour.</p>


Sign in / Sign up

Export Citation Format

Share Document