scholarly journals Effect of Depth of Total Intravenous General Anesthesia on Intraoperative Electrically Evoked Compound Action Potentials in Cochlear Implantation Surgery

2019 ◽  
Vol 2019 ◽  
pp. 1-7
Author(s):  
Ala”a Alhowary ◽  
Abdelwahab Aleshawi ◽  
Obada Alali ◽  
Manal Kassab ◽  
Diab Bani Hani ◽  
...  

Purpose. This study aims to compare the effect of the depth of total intravenous anesthesia (TIVA) on intraoperative electrically evoked compound action potential (e-ECAP) thresholds in cochlear implant operations. Methods. Prospectively, a total of 39 patients aged between 1 and 48 years who were scheduled to undergo cochlear implantation surgeries were enrolled in this study. Every patient received both light and deep TIVA during the cochlear implant surgery. The e-ECAP thresholds were obtained during the light and deep TIVA. Results. After comparing the e-ECAP means for each electrode (lead) between the light and deep anesthesia, no significant differences were detected between the light and deep anesthesia. Conclusion. The depth of TIVA may have no significant influence on the e-ECAP thresholds as there was no statistical difference between the light and deep anesthesia.

2010 ◽  
Vol 21 (01) ◽  
pp. 016-027 ◽  
Author(s):  
Eun Kyung Jeon ◽  
Carolyn J. Brown ◽  
Christine P. Etler ◽  
Sara O'Brien ◽  
Li-Kuei Chiou ◽  
...  

Background: In the mid-1990s, Cochlear Corporation introduced a cochlear implant (CI) to the market that was equipped with hardware that made it possible to record electrically evoked compound action potentials (ECAPs) from CI users of all ages. Over the course of the next decade, many studies were published that compared ECAP thresholds with levels used to program the speech processor of the Nucleus CI. In 2001 Advanced Bionics Corporation introduced the Clarion CII cochlear implant (the Clarion CII internal device is also known as the CII Bionic Ear). This cochlear implant was also equipped with a system that allowed measurement of the ECAP. While a great deal is known about how ECAP thresholds compare with the levels used to program the speech processor of the Nucleus CI, relatively few studies have reported comparisons between ECAP thresholds and the levels used to program the speech processor of the Advanced Bionics CI. Purpose: To explore the relationship between ECAP thresholds and behavioral measures of perceptual dynamic range for the range of stimuli commonly used to program the speech processor of the Advanced Bionics CI. Research Design: This prospective and experimental study uses correlational and descriptive statistics to define the relationship between ECAP thresholds and perceptual dynamic range measures. Study Sample: Twelve postlingually deafened adults participated in this study. All were experienced users of the Advanced Bionics CI system. Data Collection and Analysis: ECAP thresholds were recorded using the commercially available SoundWave software. Perceptual measures of threshold (T-level), most comfortable level (M-level), and maximum comfortable level (C-level) were obtained using both “tone bursts” and “speech bursts.” The relationship between these perceptual and electrophysiological variables was defined using paired t-tests as well as correlation and linear regression. Results: ECAP thresholds were significantly correlated with the perceptual dynamic range measures studied; however, correlations were not strong. Analysis of the individual data revealed considerable discrepancy between the contour of ECAP threshold versus electrode function and the behavioral loudness estimates used for programming. Conclusion: ECAP thresholds recorded from Advanced Bionics cochlear implant users always indicated levels where the programming stimulus was audible for the listener. However, the correlation between ECAP thresholds and M-levels (the primary metric used to program the speech processor of the Advanced Bionics CI), while statistically significant, was quite modest. If programming levels are to be determined on the basis of ECAP thresholds, care should be taken to ensure that stimulation is not uncomfortably loud, particularly on the basal electrodes in the array.


2010 ◽  
Vol 31 (1) ◽  
pp. 134-145 ◽  
Author(s):  
Isaac Alvarez ◽  
Angel de la Torre ◽  
Manuel Sainz ◽  
Cristina Roldán ◽  
Hansjoerg Schoesser ◽  
...  

2007 ◽  
Vol 73 (4) ◽  
pp. 439-445 ◽  
Author(s):  
Mariana Cardoso Guedes ◽  
Raimar Weber ◽  
Maria Valéria S Goffi Gomez ◽  
Rubens Vuono de Brito Neto ◽  
Cristina Gomes O Peralta ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document