scholarly journals Atrial Fibrillation Detection by the Combination of Recurrence Complex Network and Convolution Neural Network

2019 ◽  
Vol 2019 ◽  
pp. 1-9 ◽  
Author(s):  
Xiaoling Wei ◽  
Jimin Li ◽  
Chenghao Zhang ◽  
Ming Liu ◽  
Peng Xiong ◽  
...  

In this paper, R wave peak interval independent atrial fibrillation detection algorithm is proposed based on the analysis of the synchronization feature of the electrocardiogram signal by a deep neural network. Firstly, the synchronization feature of each heartbeat of the electrocardiogram signal is constructed by a Recurrence Complex Network. Then, a convolution neural network is used to detect atrial fibrillation by analyzing the eigenvalues of the Recurrence Complex Network. Finally, a voting algorithm is developed to improve the performance of the beat-wise atrial fibrillation detection. The MIT-BIH atrial fibrillation database is used to evaluate the performance of the proposed method. Experimental results show that the sensitivity, specificity, and accuracy of the algorithm can achieve 94.28%, 94.91%, and 94.59%, respectively. Remarkably, the proposed method was more effective than the traditional algorithms to the problem of individual variation in the atrial fibrillation detection.

2020 ◽  
Vol 41 (Supplement_2) ◽  
Author(s):  
M Jacobsen ◽  
T.A Dembek ◽  
A.P Ziakos ◽  
G Kobbe ◽  
M Kollmann ◽  
...  

Abstract Background Atrial fibrillation (A-fib) is the most common arrhythmia; however, detection of A-fib is a challenge due to irregular occurrence. Purpose Evaluating feasibility and performance of a non-invasive medical wearable for detection of A-fib. Methods In the CoMMoD-A-fib trial admitted patients with a high risk for A-fib carried the wearable and an ECG Holter (control) in parallel over a period of 24 hours under not physically restricted conditions. The wearable with a tight-fit upper arm band employs a photoplethysmography (PPG) technology enabling a high sampling rate. Different algorithms (including a deep neural network) were applied to 5 min PPG datasets for detection of A-fib. Proportion of monitoring time automatically interpretable by algorithms (= interpretable time) was analyzed for influencing factors. Results In 102 inpatients (age 71.0±11.9 years; 52% male) 2306 hours of parallel recording time could be obtained; 1781 hours (77.2%) of these were automatically interpretable by an algorithm analyzing PPG derived intervals. Detection of A-Fib was possible with a sensitivity of 92.7% and specificity of 92.4% (AUC 0.96). Also during physical activity, detection of A-fib was sufficiently possible (sensitivity 90.1% and specificity 91.2%). Usage of the deep neural network improved detection of A-fib further (sensitivity 95.4% and specificity 96.2%). A higher prevalence of heart failure with reduced ejection fraction was observed in patients with a low interpretable time (p=0.080). Conclusion Detection of A-fib by means of an upper arm non-invasive medical wearable with a high resolution is reliably possible under inpatient conditions. Funding Acknowledgement Type of funding source: Public Institution(s). Main funding source(s): Internal grant program (PhD and Dr. rer. nat. Program Biomedicine) of the Faculty of Health at Witten/Herdecke University, Germany. HELIOS Kliniken GmbH (Grant-ID 047476), Germany


2020 ◽  
Vol 44 (6) ◽  
Author(s):  
S. K. Ghosh ◽  
R. K. Tripathy ◽  
Mario R. A. Paternina ◽  
Juan J. Arrieta ◽  
Alejandro Zamora-Mendez ◽  
...  

2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Syed Khairul Bashar ◽  
Dong Han ◽  
Shirin Hajeb-Mohammadalipour ◽  
Eric Ding ◽  
Cody Whitcomb ◽  
...  

Abstract Detection of atrial fibrillation (AF) from a wrist watch photoplethysmogram (PPG) signal is important because the wrist watch form factor enables long term continuous monitoring of arrhythmia in an easy and non-invasive manner. We have developed a novel method not only to detect AF from a smart wrist watch PPG signal, but also to determine whether the recorded PPG signal is corrupted by motion artifacts or not. We detect motion and noise artifacts based on the accelerometer signal and variable frequency complex demodulation based time-frequency analysis of the PPG signal. After that, we use the root mean square of successive differences and sample entropy, calculated from the beat-to-beat intervals of the PPG signal, to distinguish AF from normal rhythm. We then use a premature atrial contraction detection algorithm to have more accurate AF identification and to reduce false alarms. Two separate datasets have been used in this study to test the efficacy of the proposed method, which shows a combined sensitivity, specificity and accuracy of 98.18%, 97.43% and 97.54% across the datasets.


Sign in / Sign up

Export Citation Format

Share Document