scholarly journals A Quaternion-Based Robust Adaptive Spherical Simplex Unscented Particle Filter for MINS/VNS/GNS Integrated Navigation System

2019 ◽  
Vol 2019 ◽  
pp. 1-13 ◽  
Author(s):  
Ke Jia ◽  
Yifei Pei ◽  
Zhaohui Gao ◽  
Yongmin Zhong ◽  
Shesheng Gao ◽  
...  

An improved filtering algorithm-robust adaptive spherical simplex unscented particle filter (RASSUPF) is proposed to achieve high accuracy, induce the amount of computation, and resist the influence of abnormal interference for the MINS/VNS/GNS integrated navigation system. This algorithm adopts spherical simplex unscented transformation (SSUT) to approximate the probability distribution, employs the spherical simplex unscented Kalman filter (SSUKF) to generate the importance sampling density of particle filter, and applies robust and adaptive estimation to control the influence of the abnormal information on the state model and the observation model. Simulation results demonstrate the proposed algorithm can effectively reduce the navigation error, improve the navigation positioning precision, and decrease the computation cost.

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Li Xue ◽  
Yulan Han ◽  
Chunning Na

In order to solve the problems of particle degradation and difficulty in selecting importance density function in particle filter algorithm, a robust interacting multiple model unscented particle filter algorithm is presented, which is based on the advantages of interacting multiple model and particle filter algorithms. This algorithm can use the unscented transformation to get the particles that contain the latest measurement information of each model and calculate the robust equivalent weight function. This robust factor is designed to adjust the estimation and variance, and the important distribution function adaptively obtained is closer to the true distribution. Then, the particles weights can be flexibly adjusted in real time by using Euclidean distance to improve the computational efficiency during the resampling process. In addition, this filter process can comprehensively describe the uncertainty of the statistics characteristic of observation noise between different models. The diversity of available particles is increased, and the filter precision is improved. The proposed algorithm is applied to the SINS/GPS integrated navigation system, and the simulation analysis results demonstrate that the algorithm can effectively improve the filter performance and the calculation precision in positioning of integrated navigation system; thus, it provides a new method for nonlinear model filter.


2018 ◽  
Vol 41 (5) ◽  
pp. 1290-1300
Author(s):  
Jieliang Shen ◽  
Yan Su ◽  
Qing Liang ◽  
Xinhua Zhu

An inertial navigation system (INS) aided with an aircraft dynamic model (ADM) is developed as a novel airborne integrated navigation system, coping with the absence of a global navigation satellite system. To overcome the shortcomings of the conventional linear integration of INS/ADM based on an extended Kalman filter, a nonlinear integration method is proposed. Fast-update ADM makes it possible to utilize a direct filtering method, which employs nonlinear INS mechanics as system equations and a nonlinear ADM as observation equations, substituting the indirect filtering based on linear error equations. The strong nonlinearity generally calls for an unscented Kalman filter to accomplish the fusion process. Dealing with the model uncertainty, the inaccurate statistical characteristics of the noise and the potential nonpositive definiteness of the covariance matrix, an improved square-root unscented H∞ filter (ISRUHF) is derived in the paper, in which the robust factor [Formula: see text] is further expanded into a diagonal matrix [Formula: see text], to improve the accuracy and robustness of the integrated navigation system. Corresponding simulations as well as real flight tests based on a small-scale fixed-wing aircraft are operated and ISRUHF shows superiority compared with the commonly used fusion algorithm.


2013 ◽  
Vol 347-350 ◽  
pp. 1544-1548
Author(s):  
Zi Yu Li ◽  
Yan Liu ◽  
Ping Zhu ◽  
Cheng Ying

In multi-sensor integrated navigation systems, when sub-systems are non-linear and with Gaussian noise, the federated Kalman filter commonly used generates large error or even failure when estimating the global fusion state. This paper, taking JIDS/SINS/GPS integrated navigation system as example, proposes a federated particle filter technology to solve problems above. This technology, combining the particle filter with the federated Kalman filter, can be applied to non-linear non-Gaussian integrated system. It is proved effective in information fusion algorithm by simulated application, where the navigation information gets well fused.


Sign in / Sign up

Export Citation Format

Share Document