scholarly journals Influence of “X” Fracture, Confining Pressure, and Temperature on Rock Masses’ Failure Process

2020 ◽  
Vol 2020 ◽  
pp. 1-10
Author(s):  
Yunjuan Chen ◽  
Yi Jing ◽  
Yanchun Yin ◽  
Fuqiang Yin ◽  
Chenglong Zhao

Based on the similarity theory, sandstone was taken as the prototype, and rock-like specimens were made with the strength ratio of 1 : 1. Single “X” fracture and double “X” fractures were prefabricated in rock-like specimen, and crack propagation was studied through the compressive test. An improved discontinuous deformation analysis method (DDARF) was adopted to simulate on the cracking process. Further, other factors should not be ignored such as confining pressure and temperature, which were considered: rock’s crack propagations under loading and unloading with different confining pressures were studied; influences of temperature from 20°C to 300°C on crack propagation were analyzed.

2021 ◽  
pp. 014459872098153
Author(s):  
Yanzhi Hu ◽  
Xiao Li ◽  
Zhaobin Zhang ◽  
Jianming He ◽  
Guanfang Li

Hydraulic fracturing is one of the most important technologies for shale gas production. Complex hydraulic fracture networks can be stimulated in shale reservoirs due to the existence of numerous natural fractures. The prediction of the complex fracture network remains a difficult and challenging problem. This paper presents a fully coupled hydromechanical model for complex hydraulic fracture network propagation based on the discontinuous deformation analysis (DDA) method. In the proposed model, the fracture propagation and rock mass deformation are simulated under the framework of DDA, and the fluid flow within fractures is simulated using lubrication theory. In particular, the natural fracture network is considered by using the discrete fracture network (DFN) model. The proposed model is widely verified against several analytical and experimental results. All the numerical results show good agreement. Then, this model is applied to field-scale modeling of hydraulic fracturing in naturally fractured shale reservoirs. The simulation results show that the proposed model can capture the evolution process of complex hydraulic fracture networks. This work offers a feasible numerical tool for investigating hydraulic fracturing processes, which may be useful for optimizing the fracturing design of shale gas reservoirs.


Sign in / Sign up

Export Citation Format

Share Document