rock slope stability
Recently Published Documents


TOTAL DOCUMENTS

354
(FIVE YEARS 86)

H-INDEX

23
(FIVE YEARS 3)

2021 ◽  
Vol 940 (1) ◽  
pp. 012006
Author(s):  
D J Sasangka

Abstract Shortcut 4 new national road development project on Singaraja - Mangwitani section Bali found a potential rock slide slope problem. An outcrop of igneous rock with an intensive joint was not expected to be encountered previously. The excavation work in road construction had to pay attention to the stability of the resulting rock slope considering that apart from the potential for slope failure, rock slope could also threaten the bridge abutment building in front of it. The location of the rock slope was on the edge of Lake Bratan which is geologically part of the early Holocene volcanic rocks, namely mountain rocks composed of tuff, lava and volcanic breccia. Anisotropic andesite slope was controlled by a discontinuous plane with a certain pattern. Rock Quality Assessment was carried out by the Rock Mass Rating (RMR) method and Slope Mass Rating (SMR) for slope stability evaluation. The planar, tople and wedge potensial slope failure were evaluated. The potential for planar slope failure has a value of SMR 30.18 (Unstable), 57.6 (Partialy Stable) for wedge slope failure potential and 47.6 (Partialy Stable) for tople slope failure potential. The SMR value indicated that the rock slope requires engineering threatment to become stable.


2021 ◽  
Author(s):  
Yildirim İsmail Tosun

The soft rock and wet slopes increase landslides over 50 m long creep slide and risk assessment for long steep slide in Şırnak open-pit coal mining should be searched in asphaltite quarries. The Avgamasya quarries No1 and 2 at critical depths and road bench sites in Şırnak, reaching over 120 m height with 60–65° shale slopes, developing major creep factors and other factors for landslide in the deep quarry locations is resulting debris rock falling or free sliding. The pore pressure measurements by measurements of water levels in four wells and water flow counting as the mining safety in recent years. This research provided rock slope stability patterns and crack propagation control of the hazardous location and formation cracks. The stages of creep experimentation explored the geophysical characteristics and thaw and freeze testing of rock samples. For this aim, two different long sliding areas with similar geoseismical conditions, two main analyzing methods, and patterns of researches were developed. Firstly, data on crack propagation in situ rock shale faces over certain time periods were determined. Displacement measurements over highly saturated shale—limestone contacts over the base of crack counting in a meter scale such as Rock Quality Designation (RQD) scoring of drilling logs. Secondly, hydrological water level logs were taken into consideration. On the other hand, due to that creep effect over freeze crack propagation unseen cause instability over wet sliding surfaces over 50 m, long sliding surface matter over slopes, poly linear or circle type creep sliding or rock tumbling falling failure types, and GEO5 slope stability, slice analysis will be advantageous instead of Finite Element Method (FEM) method.


Author(s):  
Mohammad Azarafza ◽  
Haluk Akgün ◽  
Akbar Ghazifard ◽  
Ebrahim Asghari-Kaljahi ◽  
Jafar Rahnamarad ◽  
...  

2021 ◽  
Vol 18 (1) ◽  
pp. 36-43
Author(s):  
Hadeer Ghazi Adeeb ◽  
Ibrahim S. I. AL-JUMAILY

Geological discontinuities play a significant role in the assessment of rock slope stability. Rock slope stability has been studied on the main road between Sulav and Amadiya resorts in Duhok governorate on the southern limb of Mateen anticline, to determine the expected rock slides on this road. Five (5) stations were chosen to study these rock slides that may occur on these steep slopes. All these stations within Pila Spi Formation that consists of hard dolomitic limestone and covering the areas from Sulav resort towards Amadiya district with a length of up to 2.5 Kms. The Stereographic analysis was used to study and classify the stability of these slopes. The analysis showed in all stations the possibility of plane sliding to happen on the bedding plane, and the wedge sliding between the bedding plane and planes of all joint sets, as well as the occurrence of rockfall on some stations.


2021 ◽  
Vol 11 (18) ◽  
pp. 8585
Author(s):  
Bin Fu ◽  
Yingchun Li ◽  
Chun’an Tang ◽  
Zhibin Lin

Rock slope stability is commonly dominated by locked patches along a potential slip surface. How naturally heterogeneous locked patches of different properties affect the rock slope stability remains enigmatic. Here, we simulate a rock slope with two locked patches subjected to shear loading through a self-developed software, rock failure process analysis (RFPA). In the finite element method (FEM)-based code, the inherent heterogeneity of rock is quantified by the classic Weibull distribution, and the constitutive relationship of the meso-scale element is formulated by the statistical damage theory. The effects of mechanical and geometrical properties of the locked patches on the stability of the simulated rock slope are systematically studied. We find that the rock homogeneity modulates the failure mode of the rock slope. As the homogeneity degree is elevated, the failure of the locked patch transits from the locked patch itself to both the interfaces between the locked patched and the slide body and the bedrock, and then to the bedrock. The analysis of variance shows that length and strength of locked patch affect most shear strength and the peak shear displacement of the rock slope. Most of the rock slopes exhibit similar failure modes where the macroscopic cracks mainly concentrate on the interfaces between the locked patch and the bedrock and the slide body, respectively, and the acoustic events become intensive after one of the locked patches is damaged. The locked patches are failed sequentially, and the sequence is apparently affected by their relative positions. The numerically reproduced failure mode of the rock slope with locked patches of different geometrical and mechanical properties are consistent with the laboratory observations. We also propose a simple spring-slider model to elucidate the failure process of the rock slope with locked patches.


Geofluids ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-10
Author(s):  
Lihua Huang ◽  
Liudan Mao ◽  
YiRong Zhu ◽  
YuLing Wang

Aiming at the problems of low accuracy, low efficiency, and many parameters required in the current calculation of rock slope stability, a prediction model of rock slope stability is proposed, which combines principal component analysis (PCA) and relevance vector machine (RVM). In this model, PCA is used to reduce the dimension of several influencing factors, and four independent principal component variables are selected. With the help of RVM mapping the nonlinear relationship between the safety factor of slope stability and the principal component variables, the prediction model of rock slope stability based on PCA-RVM is established. The results show that under the same sample, the maximum relative error of the PCA-RVM model is only 1.26%, the average relative error is 0.95%, and the mean square error is 0.011, which is far lower than that of the RVM model and the GEP model. By comparing the results of traditional calculation method and PCA-RVM model, it can be concluded that the PCA-RVM model has the characteristics of high prediction accuracy, small discreteness, and high reliability, which provides reference value for accurately predicting the stability of rock slope.


Sign in / Sign up

Export Citation Format

Share Document